【題目】2017高考特別強調(diào)了要增加對數(shù)學文化的考查,為此某校高三年級特命制了一套與數(shù)學文化有關(guān)的專題訓練卷(文、理科試卷滿分均為100分),并對整個高三年級的學生進行了測試.現(xiàn)從這些學生中隨機抽取了50名學生的成績,按照成績?yōu)?/span>,…,分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學生的成績均不低于50分).

(1)求頻率分布直方圖中的的值,并估計所抽取的50名學生成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

(2)若高三年級共有2000名學生,試估計高三學生中這次測試成績不低于70分的人數(shù);

(3)若利用分層抽樣的方法從樣本中成績不低于70分的三組學生中抽取6人,再從這6人中隨機抽取3人參加這次考試的考后分析會,試求后兩組中至少有1人被抽到的概率.

【答案】(1),平均數(shù)是74,中位數(shù)是;(2)1200;(3)

【解析】試題分析:(1)根據(jù)個矩形面積和為 可得第4組的頻率為,從而可得結(jié)果;(2)由(1)可知,50名學生中成績不低于70分的頻率為從而可得成績不低于70分的人數(shù);(3)根據(jù)分層抽樣方法可得這三組中所抽取的人數(shù)分別為3,2,1,列舉出中任抽取3人的所有可能結(jié)果共20其中后兩組中沒有人被抽到的可能結(jié)果只有1種,由古典概型概率公式可得結(jié)果.

(1)由頻率分布直方圖可得第4組的頻率為 ,

.

故可估計所抽取的50名學生成績的平均數(shù)為

(分).

由于前兩組的頻率之和為,前三組的頻率之和為,故中位數(shù)在第3組中.

設(shè)中位數(shù)為分,

則有,所以,

即所求的中位數(shù)為分.

(2)由(1)可知,50名學生中成績不低于70分的頻率為,

由以上樣本的頻率,可以估計高三年級2000名學生中成績不低于70分的人數(shù)為.

(3)由(1)可知,后三組中的人數(shù)分別為15,10,5,故這三組中所抽取的人數(shù)分別為3,2,1.記成績在這組的3名學生分別為,,,成績在這組的2名學生分別為,,成績在這組的1名學生為,則從中任抽取3人的所有可能結(jié)果為,,,,,,,,,,,,,共20種.

其中后兩組中沒有人被抽到的可能結(jié)果為,只有1種,

故后兩組中至少有1人被抽到的概率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(a))=2fa的a的取值范圍是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足(an+1﹣1)(an﹣1)= (an﹣an+1),a1=2,若bn=
(1)證明:數(shù)列{bn}是等差數(shù)列;
(2)令cn= ,{cn}的前n項和為Tn , 用數(shù)學歸納法證明Tn (n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在各棱長均為2的三棱柱ABC﹣A1B1C1中,側(cè)面A1ACC1⊥底面ABC,且∠A1AC= ,點O為AC的中點.

(1)求證:AC⊥平面A1OB;
(2)求二面角B1﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣lnx﹣1,g(x)=k(f(x)﹣x)+ ,(k∈R).
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)當1<k<3,x∈(1,e)時,求證:g(x)>﹣ (1+ln3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.
(1)把C1的參數(shù)方程化為極坐標方程;
(2)求C1與C2交點所在直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(cos x,sin x), =(cos x,﹣sin x),且x∈[0, ].求:
(1) ;
(2)若f(x)= ﹣2λ 的最小值是﹣ ,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,以為頂點的六面體中, 均為等邊三角形,且平面平面, 平面, , .

(1)求證: 平面;

(2)求此六面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若,恒有成立,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個相異極值點, ,求證:

查看答案和解析>>

同步練習冊答案