分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)面積比是1:2,即可確定k的值
解答 解:作出不等式組對(duì)應(yīng)平面區(qū)如圖(三角形ABC部分),A(0,1),B(1,-1),
∵直線y=k(x+1)過定點(diǎn)C(-1,0),
∴C點(diǎn)在平面區(qū)域ABC內(nèi),
∴點(diǎn)A到直線y=k(x+1)的距離d上=$\frac{|k-1|}{\sqrt{1+{k}^{2}}}$,
點(diǎn)B到直線y=k(x+1)的距離d下=$\frac{|2k+1|}{\sqrt{1+{k}^{2}}}$,
∵直線y=k(x+1)把不等式組表示的平面區(qū)域分成上、下兩部分的面積比為1:2,
∴2×$\frac{|k-1|}{\sqrt{1+{k}^{2}}}$=$\frac{|2k+1|}{\sqrt{1+{k}^{2}}}$,
解得k=$\frac{1}{4}$;
故答案為:$\frac{1}{4}$
點(diǎn)評(píng) 本題主要考查二元一次不等式組表示平面區(qū)域以及三角形的面積的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | -7 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{7\sqrt{2}}}{10}$ | B. | $\frac{{7\sqrt{2}}}{10}$ | C. | $-\frac{{\sqrt{2}}}{10}$ | D. | $\frac{{\sqrt{2}}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{7}{32}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2>b2 | B. | a3>b3 | C. | $\frac{1}{a}$$<\frac{1}$ | D. | ac>bc |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com