20.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,已知b-c=$\frac{1}{4}$a,2sinB=3sinC,則cosA的值為(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

分析 由條件利用正弦定理求得a=2c,b=$\frac{3}{2}$c,再由余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$的值.

解答 解:在△ABC中,∵b-c=$\frac{1}{4}$a,2sinB=3sinC,
利用正弦定理可得2b=3c,求得a=2c,b=$\frac{3}{2}$c.
再由余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{(\frac{3}{2}c)^{2}+{c}^{2}-4{c}^{2}}{2×\frac{3c}{2}×c}$=-$\frac{1}{4}$,
故選:A.

點(diǎn)評(píng) 本題考查正弦定理和余弦定理的運(yùn)用,將a,b統(tǒng)一由c表示是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),f($\frac{π}{6}$)=f($\frac{π}{3}$),且f(x)在區(qū)間($\frac{π}{6},\frac{π}{3}$)上有最小值,則ω=8k-$\frac{10}{3}$,k≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的中心在原點(diǎn),焦點(diǎn)在x軸上,其右焦點(diǎn)F的坐標(biāo)為(c,0),過(guò)F作斜率為1的直線,交橢圓于A、B兩點(diǎn),若橢圓上存在一點(diǎn)C,使$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$.
(1)求a與b之間的等量關(guān)系.
(2)若|$\overrightarrow{AB}$|=5,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(x)=sin2(x-$\frac{π}{4}$),則f(lg5)+f(1g$\frac{1}{5}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.$\frac{cos10°}{tan20°}$+$\sqrt{3}$sin10°tan70°-2cos40°=(  )
A.0B.1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.等差數(shù)列的前n項(xiàng)、前2n項(xiàng)、前3n項(xiàng)的和分別為A、B、C,則( 。
A.A+B=CB.A+C=2BC.2A+C=3BD.3A+C=3B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(1,1-cosθ),$\overrightarrow$=(1+cosθ,$\frac{1}{2}$),且$\overrightarrow{a}$∥$\overrightarrow$,則銳角θ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.平行四邊形ABCD的三個(gè)頂點(diǎn)分別是A(2,0),B(0,2),C(5,3).
(Ⅰ)求CD所在的直線方程;
(Ⅱ)求平行四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)函數(shù)y=sin(2x+φ)(0<φ<$\frac{π}{2}$)的單調(diào)遞增區(qū)間是[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ](k∈Z),則φ=$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案