分析 (Ⅰ)由 $2c=2\sqrt{3},2a=4$,$a=2,c=\sqrt{3}$,b2=a2-c2,聯(lián)立基礎(chǔ)即可得出.
(Ⅱ)(ⅰ)設(shè)A(x1,y1),B(x2,y2),①當(dāng)直線AB的斜率不存在時(shí),則△AOB為等腰直角三角形,不妨設(shè)直線OA:y=x,將y=x代入橢圓方程,解得x即可得出.
②當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為y=kx+m,代入橢圓方程,可得:(1+4k2)x2+8kmx+4m2-4=0,由OA⊥OB,可得x1x2+y1y2=0,把根與系數(shù)的關(guān)系代入即可得出.
解答 解:(Ⅰ) $2c=2\sqrt{3},2a=4$,$a=2,c=\sqrt{3}$,b2=a2-c2=1,
所以橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{4}+{y^2}=1$.
(Ⅱ)(。┰O(shè)A(x1,y1),B(x2,y2),
①當(dāng)直線AB的斜率不存在時(shí),則△AOB為等腰直角三角形,不妨設(shè)直線OA:y=x,
將y=x代入$\frac{x^2}{4}+{y^2}=1$,解得$x=±\frac{2}{5}\sqrt{5}$
所以點(diǎn)O到直線AB的距離為$d=\frac{2}{5}\sqrt{5}$.
②當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為y=kx+m,代入橢圓$\frac{x^2}{4}+{y^2}=1$,
聯(lián)立消去y得:(1+4k2)x2+8kmx+4m2-4=0${x_1}+{x_2}=-\frac{8km}{{1+4{k^2}}}$,${x_1}{x_2}=\frac{{4{m^2}-4}}{{1+4{k^2}}}$,
因?yàn)镺A⊥OB,所以x1x2+y1y2=0,x1x2+(kx1+m)(kx2+m)=0,
即(1+k2)x1x2+km(x1+x2)+m2=0,
所以$(1+{k^2})\frac{{4{m^2}-4}}{{1+4{k^2}}}-\frac{{8{k^2}{m^2}}}{{1+4{k^2}}}+{m^2}=0$,整理得5m2=4(1+k2),
所以點(diǎn)O到直線AB的距離$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$=$\frac{{2\sqrt{5}}}{5}$,
綜上可知點(diǎn)O到直線AB的距離為定值$\frac{2}{5}\sqrt{5}$.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題、一元二次的根與系數(shù)、向量垂直與數(shù)量積運(yùn)算性質(zhì)、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-3] | B. | (-3,+∞) | C. | [-5,-2] | D. | (-5,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ex1-ex2<lnx1-lnx2 | B. | ex1-ex2>lnx1-lnx2 | ||
C. | x1ex2<x2ex1 | D. | x1ex2>x2ex1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\sqrt{3}$ | C. | -$\frac{{\sqrt{3}}}{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | l | B. | -l | C. | ±l | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com