2.已知函數(shù)f(x)的圖象是由函數(shù)h(x)=x2的圖象向上平移1個單位長度得到的.(1)求f(x)的解析式:(2)設(shè)g(x)=f(x)-mx2,且在(0,2)上g′(x)<0恒成立,求m的取值范圍.

分析 (1)利用圖象平移變換,可得f(x)的解析式;
(2)求導(dǎo)數(shù),分離參數(shù),即可得出結(jié)論.

解答 解:(1)∵函數(shù)f(x)的圖象是由函數(shù)h(x)=x2的圖象向上平移1個單位長度得到,
∴f(x)=x2+1;
(2)g(x)=f(x)-mx2=(1-m)x2+1,
∴g′(x)=2(1-m)x<0在(0,2)上恒成立,
∴2(1-m)<0
∴m>1.

點評 本題考查函數(shù)的解析式,考查導(dǎo)數(shù)知識的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次方程(2m+1)x2-2mx+(m-1)=0有且只有一個實根屬于(1,2),且x=1,x=2都不是方程的根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實數(shù)x,y滿足ln(2x+2y)=0,則x+y的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知過拋物線y2=2px(p>0)的焦點F作一條直線交拋物線于A、B兩點,以線段AB為直徑的圓與直線x=-1相切,求該拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.解下列各一元二次不等式:
(1)(x+3)(x-1)>-3;
(2)2x2-7x≤x2+12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知點A(cos77°,sin77°),B(cos17°,sin17°),則直線AB的斜率為( 。
A.tan47°B.tan43°C.-tan47°D.-tan43°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點,G,H分別是BC,CD上的點,且$\frac{BG}{GC}=\frac{DH}{HC}$=2,求證:直線EG,F(xiàn)H,AC相交于同一點P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等差數(shù)列{an}的前n項和為Sn,已知a1=10,a2為整數(shù),且Sn≤S4.則通項公式an=13-3n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)$f(x)={(\frac{1}{4})^x}+a•{(\frac{1}{2})^x}-1$,g(x)=$\frac{1-m•{2}^{x}}{1+m•{2}^{x}}$.
(Ⅰ)當a=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(Ⅱ)當m=1時,判斷函數(shù)g(x)的奇偶性并證明,并判斷g(x)是否有上界,并說明理由;
(Ⅱ)若函數(shù)f(x)在[0,+∞)上是以2為上界的有界函數(shù),求實數(shù)a的取值范圍;
( IV)若m>0,函數(shù)g(x)在[0,1]上的上界是G,求G的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案