15.在圓中有“圓心與弦(非直徑)的中點(diǎn)的連線垂直于弦所在的直線”.比上述性質(zhì),相應(yīng)地:在球中有球心與截面圓(不經(jīng)過(guò)球心的截面圓)圓心的連線垂直于截面圓所在的平面.

分析 直接利用類比推理的方法,寫出結(jié)果即可.

解答 解:由類比推理的法則,可知,圓心對(duì)應(yīng)球心,弦對(duì)應(yīng)截面圓,弦的中點(diǎn)對(duì)應(yīng)圓心,
所以在圓中有“圓心與弦(非直徑)的中點(diǎn)的連線垂直于弦所在的直線”.
比上述性質(zhì),相應(yīng)地:在球中有:球心與截面圓(不經(jīng)過(guò)球心的截面圓)圓心的連線垂直于截面圓所在的平面.
故答案為:球心與截面圓(不經(jīng)過(guò)球心的截面圓)圓心的連線垂直于截面圓所在的平面.

點(diǎn)評(píng) 本題考查類比推理的應(yīng)用,考查分析問題解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在等比數(shù)列{an}中,
(1)若Sn=189,q=2,an=96,求a1和n;
(2)若a1+a3=10,a4+a6=$\frac{5}{4}$,求a4和S5;
(3)若q=2,S4=1,求S8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合A={(x,y)|x2+y2=16,x∈Z,y∈Z},則集合A的子集個(gè)數(shù)為( 。
A.8B.32C.16D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在北京召開的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是$\frac{1}{25}$,則sin2θ-cos2θ的值等于(  )
A.1B.-$\frac{7}{25}$C.$\frac{7}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}滿足:a1=m(m為正整數(shù)),an+1=$\left\{\begin{array}{l}\frac{a_n}{2},當(dāng){a_n}為偶數(shù)時(shí)\\ 3{a_n}+1,當(dāng){a_n}為奇數(shù)時(shí)\end{array}$若a6=1,則m所有可能的取值的個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在△ABC中,內(nèi)角A、B、C所對(duì)的邊為a、b、c,若c2≤a2+b2-ab,則C的取值范圍為( 。
A.(0,$\frac{π}{3}$]B.[$\frac{π}{6}$,π)C.[$\frac{π}{3}$,π)D.(0,$\frac{π}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-2ax+1+lnx
(Ⅰ)當(dāng)a=0時(shí),若函數(shù)f(x)在其圖象上任意一點(diǎn)A處的切線斜率為k,求k的最小值,并求此時(shí)的切線方程;
(Ⅱ)若函數(shù)f(x)的極大值點(diǎn)為x1,證明:x1lnx1-ax12>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)△ABC內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=$\sqrt{3}$,則bcosC+ccosB=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合M={0,2a},N={a,b},若M∩N={2},則M∪N=( 。
A.{0,2,3}B.{1,2,3}C.{0,1,2}D.{0,1,3}

查看答案和解析>>

同步練習(xí)冊(cè)答案