5.${10^{-(lg2+lg5)}}+{(\frac{2015}{2014})^0}$=(  )
A.-6B.$\frac{11}{10}$C.$\frac{9}{10}$D.-9

分析 根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),計(jì)算即可.

解答 解:${10^{-(lg2+lg5)}}+{(\frac{2015}{2014})^0}$=10-lg10+1=$\frac{1}{10}$+1=$\frac{11}{10}$,
故選:B.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=sinx+1,用“五點(diǎn)法”作圖畫出函數(shù)f(x)在[0,2π]的草圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$tanα=\frac{1}{2}$,則$\frac{{2{{cos}^2}\frac{α}{2}-sinα-1}}{{\sqrt{2}sin(\frac{π}{4}+α)}}$的值為( 。
A.$\frac{4}{3}$B.-3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共線的兩個(gè)向量,有下列四組向量:
①$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$;$\overrightarrow$=-2$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$;
②$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$;
③$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$-$\frac{1}{3}$$\overrightarrow{{e}_{2}}$,$\overrightarrow$=-$\overrightarrow{{e}_{1}}$-$\frac{1}{6}$$\overrightarrow{{e}_{2}}$;
④$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$,$\overrightarrow$=-3$\overrightarrow{{e}_{1}}$,
其中$\overrightarrow{a}$與$\overrightarrow$共線的組數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.3個(gè)不同的球放入編號(hào)為1,2,3的三個(gè)盒子中,每個(gè)盒子中球的個(gè)數(shù)不大于盒子的編號(hào),則共有19種方法(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(Ⅰ)設(shè)$M=\frac{{sin(-{{220}^0})}}{{cos(-{{310}^0})tan{{315}^0}}}$,求M的值;
(Ⅱ)記p=sinθ+cosθ,試用p表示sin4θ+cos4θ;
(Ⅲ)設(shè)$0<x<\frac{π}{2}$,$cos(x+\frac{π}{3})=\frac{1}{4}$,求sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知$tanx=\frac{1}{2}$,求下列各式的值:
(1)$\frac{sinx-3cosx}{sinx+cosx}$
(2)cos2x-sinx•cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知m∈R,函數(shù)f(x)=$\left\{\begin{array}{l}{|3x+1|,x<0}\\{lo{g}_{3}x,x>0}\end{array}\right.$,g(x)=x2-2x+2m-1,若函數(shù)y=f(g(x))-m有6個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(0,$\frac{5}{7}$)B.($\frac{3}{7}$,$\frac{5}{7}$)C.(0,$\frac{3}{7}$)D.($\frac{2}{7}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知等比數(shù)列{an}中a2=2,a5=$\frac{1}{4}$,則a1•a2+a2•a3+a3•a4+…+an•an+1等于( 。
A.16(1-4-nB.16(1-2nC.$\frac{32}{3}(1-{4^{-n}})$D.$\frac{32}{3}(1-{2^{-n}})$

查看答案和解析>>

同步練習(xí)冊(cè)答案