17.已知$tanx=\frac{1}{2}$,求下列各式的值:
(1)$\frac{sinx-3cosx}{sinx+cosx}$
(2)cos2x-sinx•cosx.

分析 (1)原式分子分母除以cosx,利用同角三角函數(shù)間基本關(guān)系化簡(jiǎn),把tanx的值代入計(jì)算即可求出值;
(2)原式分母看做“1”,利用同角三角函數(shù)間基本關(guān)系化簡(jiǎn),把tanx的值代入計(jì)算即可求出值.

解答 解:(1)∵tanx=$\frac{1}{2}$,
∴原式=$\frac{tanx-3}{tanx+1}$=$\frac{\frac{1}{2}-3}{\frac{1}{2}+1}$=-$\frac{5}{3}$;
(2)∵tanx=$\frac{1}{2}$,
∴原式=$\frac{co{s}^{2}x-sinxcosx}{co{s}^{2}x+si{n}^{2}x}$=$\frac{1-tanx}{1+ta{n}^{2}x}$=$\frac{1-\frac{1}{2}}{1+\frac{1}{4}}$=$\frac{2}{5}$.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=x3+ax2+bx+1在x=1時(shí)有極值4,那么a,b的值分別為a=-5,b=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=ex,則f′(0)的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.${10^{-(lg2+lg5)}}+{(\frac{2015}{2014})^0}$=( 。
A.-6B.$\frac{11}{10}$C.$\frac{9}{10}$D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,已知∠A,∠B,∠C的對(duì)邊分別為a,b,c,且∠C=2∠A.
(Ⅰ)若∠B為銳角,求$\frac{c}{a}$的取值范圍;
(Ⅱ)若4cosA=3,a+c=20,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=Asin(ωx+ϕ)({x∈R,ω>0,A>0,0<ϕ<\frac{π}{2}})$的最大值為2,最小正周期為π,直線x=$\frac{π}{6}$是其圖象的一條對(duì)稱軸.
(1)求f(x)的解析式; 
(2)當(dāng)$x∈[{0,\frac{π}{2}}]$時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若銳角α、β滿足cosα>sinβ則下列各式正確的是(  )
A.α+β<$\frac{π}{2}$B.α+β=$\frac{π}{2}$C.α+β>$\frac{π}{2}$D.α>β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ex-2x+a有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.對(duì)于給定的正數(shù)K,定義函數(shù)fK(x)=$\left\{\begin{array}{l}{f(x),}&{f(x)≤K}\\{K,}&{f(x)>K}\end{array}\right.$,其中函數(shù)f(x)=$\frac{lnx+1}{{e}^{x}}$,恒有fK(x)=f(x),則( 。
A.K的最大值為$\frac{1}{e}$B.K最小值為$\frac{1}{e}$C.K的最大值為2D.K的最小值為2

查看答案和解析>>

同步練習(xí)冊(cè)答案