1.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+a,\;\;\;\;\;\;x≤0\\|{\frac{1-x}{2(x+1)}}|,\;\;x>0.\end{array}$若函數(shù)g(x)=f(x)-x恰有兩個零點,則實數(shù)a的取值范圍是$(0,+∞)∪\{-\frac{1}{4}\}$.

分析 畫出函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+a,\;\;\;\;\;\;x≤0\\|{\frac{1-x}{2(x+1)}}|,\;\;x>0.\end{array}$的圖象,若函數(shù)g(x)=f(x)-x恰有兩個零點,則函數(shù)f(x)的圖象與函數(shù)y=x的圖象有且只有兩個交點,數(shù)形結合可得答案.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+a,\;\;\;\;\;\;x≤0\\|{\frac{1-x}{2(x+1)}}|,\;\;x>0.\end{array}$的圖象如下圖所示:

當x>0時,函數(shù)f(x)的圖象與函數(shù)y=x的圖象有且只有一個交點,
即函數(shù)g(x)=f(x)-x恰有一個零點,
故x≤0時,函數(shù)g(x)=f(x)-x也恰有一個零點,
即x≤0時,函數(shù)f(x)的圖象與函數(shù)y=x的圖象有且只有一個交點,
故a>0,y=x與y=-x2+a相切,
解得:a=-$\frac{1}{4}$,
故實數(shù)a的取值范圍是:$(0,+∞)∪\{-\frac{1}{4}\}$,
故答案為:$(0,+∞)∪\{-\frac{1}{4}\}$

點評 本題考查的知識點是函數(shù)的圖象,二次函數(shù)的圖象和性質,數(shù)形結合思想,函數(shù)的零點,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.直線y=m(m>0)與y=|logax|(a>0且a≠1)的圖象交于A,B兩點.分別過點A,B作垂直于x軸的直線交y=$\frac{k}{x}$(k>0)的圖象于C,D兩點,則直線CD的斜率( 。
A.與m有關B.與a有關C.與k有關D.等于-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知圓C過點M(0,-$\frac{1}{2}$),且與直線l:y=$\frac{1}{2}$相切.
(I)求圓心C的軌跡方程;
(Ⅱ)設軌跡與過點N(0,-1)的直線m相交于A,B兩點,O為坐標原點,若OA和OB的斜率之和為1,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=|x+a|+|x-4|.
(Ⅰ)若a=1,解不等式:f(x)≤2|x-4|;
(Ⅱ)若f(x)≥3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.如圖所示,已知C為圓${({x+\sqrt{2}})^2}$+y2=4的圓心,點A(${\sqrt{2}$,0),P是圓上的動點,點Q在圓的半徑CP所在直線上,且$\overrightarrow{MQ}$•$\overrightarrow{AP}$=0,$\overrightarrow{AP}$=2$\overrightarrow{AM}$.當點P在圓上運動時,則點Q的軌跡方程為x2-y2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\sqrt{1-{{(x-1)}^2}}}&{x∈[0,2)}\\{f(x-2)}&{x∈[2,+∞)}\end{array}}$,若對于正數(shù)kn(n∈N*),關于x的函數(shù)g(x)=f(x)-knx的零點個數(shù)恰好為2n+1個,則$\lim_{n→+∞}$(k12+k22+k32+…+kn2)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知實數(shù)x,y滿足x2+y2=4,則函數(shù)S=x2+y2-6x-8y+25的最大值和最小值分別為( 。
A.49,9B.7,3C.$\sqrt{7}$,$\sqrt{3}$D.7,$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知矩陣$A=[{\begin{array}{l}a&1\\ 1&a\end{array}}]$(a為實數(shù)).
(1)若矩陣A存在逆矩陣,求實數(shù)a的取值范圍;
(2)若直線l:x-y+4=0在矩陣A對應的變換作用下變?yōu)橹本l':x-y+2a=0,求實數(shù)a的值;
(3)在(2)的條件下,求A5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設a,b∈R,若矩陣A=$(\begin{array}{l}{1}&{a}\\&{0}\end{array})$的變換把直線l:x+y-1=0變換為另一直線l′:x+2y+l=0.
(1)求a,b的值.
(2)求矩陣A的特征值.

查看答案和解析>>

同步練習冊答案