分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出;
(2)利用“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)∵數(shù)列{an}是首項(xiàng)為1,公差為d的等差數(shù)列,∴an=1+(n-1)d.
∵a1,a2-1,a3-1是等比數(shù)列{bn}的前三項(xiàng),
∴$({a}_{2}-1)^{2}$=a1•(a3-1),
∴d2=1+2d-1,
解得d=2,或d=0,舍去.
∴an=2n-1.
(2)由(1)可得:b1=a1=1,b2=a2-1=2,∴公比=$\frac{_{2}}{_{1}}$=2,
∴bn=2n-1.
∴cn=an•bn=(2n-1)•2n-1.
∴{cn}的前n項(xiàng)和Tn=1+3×2+5×22+…+(2n-1)•2n-1.
2Tn=2+3×22+5×23+…+(2n-3)•2n-1+(2n-1)×2n,
∴-Tn=1+2×2+2×22+…+2×2n-1-(2n-1)×2n=$\frac{2({2}^{n}-1)}{2-1}$-1-(2n-1)×2n=(3-2n)•2n-3,
∴Tn=(2n-3)•2n+3.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式前n項(xiàng)和公式、“錯(cuò)位相減法”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com