分析 (1)由f($\frac{27}{x}$)=-5列出方程,根據(jù)對數(shù)得運(yùn)算法則解出x;
(2)根據(jù)a的不同范圍討論f(x)的單調(diào)性,利用函數(shù)的單調(diào)性列出不等式解出a.
解答 解:(1)f($\frac{27}{x}$)=log3($\frac{27}{x}$)=-5,∴$\frac{27}{x}$=3-5,∴x=$\frac{27}{{3}^{-5}}$=$\frac{{3}^{3}}{{3}^{-5}}$=38.
(2)①若a>1,則f(x)在(0,+∞)上是增函數(shù),∴3a-1>a>0,解得a>1.
②若0<a<1,則f(x)在(0,+∞)上是減函數(shù),∴0<3a-1<a,解得$\frac{1}{3}$<a<$\frac{1}{2}$,
綜上,a的取值范圍是($\frac{1}{3}$,$\frac{1}{2}$)∪(1,+∞).
點(diǎn)評 本題考查了對數(shù)得運(yùn)算性質(zhì),對數(shù)函數(shù)的單調(diào)性及應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{2}{9}$,$\frac{1}{3}$)∪($\frac{2}{3}$,$\frac{7}{9}$) | B. | (-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞) | C. | (0,$\frac{1}{3}$)∪($\frac{2}{3}$,1) | D. | ($\frac{2}{9}$,$\frac{7}{9}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 27 | B. | 30 | C. | 36 | D. | 39 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\frac{2}{3}$x | B. | y=±$\frac{3}{2}$x | C. | y=±$\frac{9}{4}$x | D. | y=±$\frac{4}{9}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{3}{4}\sqrt{2}$ | C. | $\frac{{\sqrt{17}}}{4}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | c>b>a | C. | b>c>a | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com