A. | ($\frac{2}{9}$,$\frac{1}{3}$)∪($\frac{2}{3}$,$\frac{7}{9}$) | B. | (-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞) | C. | (0,$\frac{1}{3}$)∪($\frac{2}{3}$,1) | D. | ($\frac{2}{9}$,$\frac{7}{9}$) |
分析 作函數f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{x}{2}+6,x>10}\end{array}\right.$的圖象,從而化為函數y=x2-2bx+b-$\frac{2}{9}$在(0,1)上有2個零點,從而解得.
解答 解:作函數f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{x}{2}+6,x>10}\end{array}\right.$的圖象如下,
,
∵函數y=f2(x)-2bf(x)+b-$\frac{2}{9}$有6個零點,
∴函數y=x2-2bx+b-$\frac{2}{9}$在(0,1)上有2個零點,
∴$\left\{\begin{array}{l}{b-\frac{2}{9}>0}\\{1-2b+b-\frac{2}{9}>0}\\{0<b<1}\\{^{2}-2^{2}+b-\frac{2}{9}<0}\end{array}\right.$,
解得,b∈($\frac{2}{9}$,$\frac{1}{3}$)∪($\frac{2}{3}$,$\frac{7}{9}$),
故選:A.
點評 本題考查了函數的圖象的作法及數形結合的思想應用.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [1,4] | B. | (-∞,0] | C. | (-∞,4] | D. | (-∞,0]∪[1,4] |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{49}{16}$π | B. | $\frac{32}{25}$π | C. | $\frac{32}{4}$π | D. | $\frac{7}{5}$π |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com