A. | f(x)圖象C關(guān)于直線x=$\frac{11}{12}$π對稱 | |
B. | f(x)圖象C關(guān)于點($\frac{2π}{3}$,0)對稱 | |
C. | 函數(shù)f(x)在區(qū)間($\frac{5π}{6}$,$\frac{4π}{3}$)內(nèi)是增函數(shù) | |
D. | 把y=sin2x向右平移$\frac{π}{3}$個單位可以得到f(x)的圖象 |
分析 先根據(jù)函數(shù)f(x)的圖象求出f(x)的解析式,再對選項中的命題進行分析、判斷,即可得出正確的結(jié)論.
解答 解:根據(jù)函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象得,
A=1,$\frac{1}{4}$T=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,
∴T=$\frac{2π}{ω}$=π,∴ω=2,
又f($\frac{π}{3}$)=sin(2×$\frac{π}{3}$+φ)=1,
解得φ=-$\frac{π}{6}$,
∴f(x)=sin(2x-$\frac{π}{6}$);
對于A,f($\frac{11π}{12}$)=sin$\frac{5π}{3}$=-$\frac{\sqrt{3}}{2}$,∴圖象C關(guān)于直線x=$\frac{11}{12}$π對稱,錯誤;
對于B,f($\frac{2π}{3}$)=sin$\frac{π}{2}$=1,∴圖象C關(guān)于點($\frac{2π}{3}$,0)對稱,錯誤;
對于C,x∈($\frac{5π}{6}$,$\frac{4π}{3}$)時,2x-$\frac{π}{6}$∈($\frac{3π}{2}$,$\frac{7π}{6}$),
∴f(x)在區(qū)間($\frac{5π}{6}$,$\frac{4π}{3}$)內(nèi)是增函數(shù),命題正確;
對于D,把y=sin2x向右平移$\frac{π}{3}$個單位,得y=sin2(x-$\frac{π}{3}$)=sin(2x-$\frac{2π}{3}$),得到f(x)的圖象錯誤.
故選:C.
點評 本題考查了由y=Asin(ωx+φ)的部分圖象確定解析式,以及函數(shù)的圖象與性質(zhì)的應用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相切 | B. | 相離 | C. | 相交 | D. | 與k的取值有關(guān) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{27}{32}$ | B. | $\frac{3}{4}$ | C. | -$\frac{17}{32}$ | D. | $\frac{17}{32}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com