19.如圖,正方形ABCD的邊長(zhǎng)為2$\sqrt{2}$,四邊形BDEF是平行四邊形,BD與AC交于點(diǎn)G,O為GC的中點(diǎn),且FO⊥平面ABCD,F(xiàn)O=$\sqrt{3}$.
(1)求BF與平面ABCD所成的角的正切值;
(2)求證:FC∥平面ADE;
(3)求三棱錐O-ADE的體積.

分析 (1)證明∠FBO即為BF與平面ABCD所成的角,即可求BF與平面ABCD所成的角的正切值;
(2)證明平面BCF∥平面ADE,再證明:FC∥平面ADE;
(3)利用VO-ADE=VE-ADO,求三棱錐O-ADE的體積.

解答 (1)解:連接BO,因?yàn)檎叫蜛BCD的邊長(zhǎng)為$2\sqrt{2}$,所以BD⊥AC,且DB=AC=4,
又O為GC的中點(diǎn),所以GO=1,GB=2,BO=$\sqrt{5}$…(2分)
又FO⊥平面ABCD,且$FO=\sqrt{3}$,所以∠FBO即為BF與平面ABCD所成的角
所以,tan∠FBO=$\frac{FO}{BO}=\frac{{\sqrt{15}}}{5}$…(4分)
(2)證明:由正方形ABCD知BC∥AD,所以BC∥平面ADE,
又由平行四邊形BDEF知 BF∥DE,所以BF∥平面ADE,…(6分)
因?yàn)锽C∩BF=B,所以平面BCF∥平面ADE,
而FC?平面BCF,所以FC∥平面ADE.---------------------(8分)
(3)解:由上知,AO=3,所以S△ADO=$\frac{1}{2}•AO•DG$=$\frac{1}{2}•3•2$=3----------(9分)
又BDEF是平行四邊形,且FO⊥平面ABCD,$FO=\sqrt{3}$,所以三棱錐E-ADO的高為$\sqrt{3}$
所以VO-ADE=VE-ADO=$\frac{1}{3}•3•\sqrt{3}$=$\sqrt{3}$-------(12分)

點(diǎn)評(píng) 本題考查線面角,考查線面平行的判定,考查等體積法求三棱錐的體積,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.近年來(lái),某企業(yè)每年消耗電費(fèi)約24萬(wàn)元,為了節(jié)能減排,決定安裝一個(gè)可使用15年的太陽(yáng)能供電設(shè)備接入本企業(yè)電網(wǎng),安裝這種供電設(shè)備的工本費(fèi)(單位:萬(wàn)元)與太陽(yáng)能電池板的面積(單位:平方米)成正比,比例系數(shù)約為0.5,為了保證正常用電,安裝后采用太陽(yáng)能和電能互補(bǔ)供電的模式.假設(shè)在此模式下,安裝后該企業(yè)每年消耗的電費(fèi)C(單位:萬(wàn)元)與安裝的這種太陽(yáng)能電池板的面積x(單位:平方米)之間的函數(shù)關(guān)系是C(x)=$\frac{120}{x+5}$(x≥0),記F為該村安裝這種太陽(yáng)能供電設(shè)備的費(fèi)用與該村15年共將消耗的電費(fèi)之和.
(1)建立F關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為多少平方米時(shí),F(xiàn)取得最小值?最小值是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=ax-x3(a>0,且a≠1)恰好有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.1<a<e${\;}^{\frac{3}{e}}$B.1<a<e${\;}^{\frac{2}{e}}$C.0<a<e${\;}^{\frac{3}{e}}$D.e${\;}^{\frac{2}{e}}$<a<e${\;}^{\frac{3}{e}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖所示,AB是圓O的直徑,直線MN切圓O于C,CD⊥AB,AM⊥MN,BN⊥MN,給出下列四個(gè)結(jié)論:
①∠1=∠2=∠3;②AM•CN=CM•BN;③CM=CD=CN;④△ACM∽△ABC∽△CBN.
則其中正確結(jié)論的序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,多面體ABCDEF中,DE⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°,四邊形BDEF是正方形.
(1)求二面角A-EF-C的余弦值;
(2)求直線AF與平面ECF所成角的正弦值;
(3)在線段EC上是否存在點(diǎn)P,使得AP⊥平面CEF,若存在,求出$\frac{EP}{PC}$的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn是2a與-2nan的等差中項(xiàng),其中a≠0.
(1)求數(shù)列{an}的前三項(xiàng)a1,a2,a3,并猜想數(shù)列的通項(xiàng)公式;
(2)利用(1)的猜想,若S10=90,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)F1(-c,0),右焦點(diǎn)F2(c,0),若橢圓上存在一點(diǎn)P使|PF1|=2c,∠F1PF2=60°,則該橢圓的離心率e為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.?dāng)?shù)列{an}滿足a1=1,an+1+(-1)nan=2n,則{an}的前100項(xiàng)和為5100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,用A、B、C三個(gè)不同的元件連接成一個(gè)系統(tǒng)N,已知每個(gè)元件正常工作的概率都是0.8,則此系統(tǒng)N正常工作的概率為0.928.

查看答案和解析>>

同步練習(xí)冊(cè)答案