20.若數(shù)列{an}中,a1=2,且an=$\sqrt{3+{a}_{n-1}^{2}}$(n≥2),求通項公式an

分析 an=$\sqrt{3+{a}_{n-1}^{2}}$(n≥2),可得${a}_{n}^{2}-{a}_{n-1}^{2}$=3,an>0.利用等差數(shù)列的通項公式即可得出.

解答 解:∵an=$\sqrt{3+{a}_{n-1}^{2}}$(n≥2),
∴${a}_{n}^{2}-{a}_{n-1}^{2}$=3,an>0.
∴數(shù)列$\{{a}_{n}^{2}\}$是等差數(shù)列,首項為4,公差為3.
∴${a}_{n}^{2}$=4+3(n-1)=3n+1,
∴an=$\sqrt{3n+1}$.

點評 本題考查了等差數(shù)列的通項公式、遞推關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知$x=\frac{π}{6}$是函數(shù)$f(x)=({asinx+cosx})cosx-\frac{1}{2}$圖象的一條對稱軸.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)作出函數(shù)f(x)在x∈[0,π]上的圖象簡圖(列表,畫圖).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知△ABC是銳角三角形,它的三個內(nèi)角∠A、∠B、∠C的對邊分別為a、b、c,滿足b2=a2+c2-4bccos2B,且b≠c.
(1)求證:A=2B;
(2)若b=1,試求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=4m(cos2(x+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$sin2x)+n-2m(m≠0).
(1)求函數(shù)f(x)的最小正周期T;
(2)若m=1,函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值是1-$\sqrt{3}$,求n;
(3)若n=1,函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值是1-$\sqrt{3}$,求m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,k),求:
(1)當k為何值時,A,B,C三點共線?
(2)當k為何值時,∠ABC為直角?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=lg(x+$\sqrt{{x}^{2}+1}$).
(1)求f(x)的定義域;
(2)求f(x)的反函數(shù)f-1(x);
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=2cos2$\frac{x}{2}$+sinx+sin2x(x∈R).
(1)求函數(shù)f(x)的最大值,并求此時x的值;
(2)已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若f(A+$\frac{π}{4}$)=2且a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,點O滿足$\overrightarrow{OA}$•$\overrightarrow{AB}$=$\overrightarrow{OA}$•$\overrightarrow{AC}$,則點O在△ABC的(  )上.
A.角平分線B.中線C.中垂線D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.過點A(4,-a)和點B(6,b)的直線與直線y=-x+m垂直,則以AB為直徑的圓的方程可以是( 。
A.x2+y2-10x+17=0B.x2+y2-2y-1=0
C.x2+y2-8x-4y+12=0D.x2+y2-10x-2y+24=0

查看答案和解析>>

同步練習冊答案