6.若sin(α+$\frac{π}{6}}$)=$\frac{3}{5}$,則cos(${\frac{π}{3}$-α)=$\frac{3}{5}$;cos(2α-$\frac{π}{6}}$)=$±\frac{24}{25}$.

分析 利用誘導(dǎo)公式化簡(jiǎn)求解cos(${\frac{π}{3}$-α),利用誘導(dǎo)公式以及二倍角公式求解cos(2α-$\frac{π}{6}}$)即可.

解答 解:sin(α+$\frac{π}{6}}$)=$\frac{3}{5}$,則cos(${\frac{π}{3}$-α)=sin($\frac{π}{2}$-${\frac{π}{3}$+α)=sin(α+$\frac{π}{6}}$)=$\frac{3}{5}$,
cos(2α-$\frac{π}{6}}$)=sin($\frac{π}{2}$+2α-$\frac{π}{6}}$)=sin(2α+$\frac{π}{3}$)=2sin(α+$\frac{π}{6}}$)cos(α+$\frac{π}{6}}$)=$±2×\frac{3}{5}×\sqrt{1-(\frac{3}{5})^{2}}$=$±\frac{24}{25}$
故答案為:$\frac{3}{5}$;$±\frac{24}{25}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及兩角和與差的三角函數(shù),二倍角公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將5名男生,2名女生排成一排,要求男生甲必須站在中間,2名女生必須相鄰的排法種數(shù)有( 。
A.192種B.216種C.240種D.360種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知命題p:m2-m-6≥0,命題q:$\frac{x^2}{m}+\frac{y^2}{2}$=1表示焦點(diǎn)在x軸上的橢圓,若“p且q”與“非q”同時(shí)為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=cos(x+$\frac{π}{4}$)sinx,則函數(shù)f(x)的圖象( 。
A.最小正周期為T=2πB.關(guān)于點(diǎn)($\frac{π}{8}$,-$\frac{\sqrt{2}}{4}$)對(duì)稱
C.在區(qū)間(0,$\frac{π}{8}$)上為減函數(shù)D.關(guān)于直線x=$\frac{π}{8}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知公差d>0的等差數(shù)列{an}中,a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求公差d及通項(xiàng)an;
(2)設(shè)Sn=$\frac{1}{{{a_1}{a_2}}}$+$\frac{1}{{{a_2}{a_3}}}$+…+$\frac{1}{{{a_n}{a_{n+1}}}}$,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知等差數(shù)列{an}的公差d=2,前n項(xiàng)的和為Sn.等比數(shù)列{bn}滿足b1=a1,b2=a4,b3=a13
(I)求{an},{bn}及數(shù)列{bn}的前n項(xiàng)和Bn;
(II)記數(shù)列{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知三個(gè)正數(shù)a,b,c為等比數(shù)列,則$\frac{a+c}$+$\frac{a+c}$的最小值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.給出以下命題:
①雙曲線$\frac{y^2}{2}$-x2=1的漸近線方程為y=±$\sqrt{2}$x;
②命題P:?x∈R+,sinx+$\frac{1}{sinx}$≥1是真命題;
③已知線性回歸方程為$\widehaty$=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
則正確命題的序號(hào)為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,四邊形ABCD的四個(gè)頂點(diǎn)在半徑為2的圓O上,若∠BAD=$\frac{π}{3}$,CD=2,則BC=(  )
A.2B.4C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案