分析 先根據(jù)f′(1)=0,求出a的值,從而求出函數(shù)的單調(diào)區(qū)間,進(jìn)而求出函數(shù)f(x)的極大值.
解答 解:函數(shù)f(x)=ax2+2x-$\frac{4}{3}$lnx在x=1處取得極值,(x>0)
則f′(x)=2ax+2-$\frac{4}{3x}$,f′(1)=2a+2-$\frac{4}{3}$=0,解得:a=-$\frac{1}{3}$,
∴f(x)=-$\frac{1}{3}$x2+2x-$\frac{4}{3}$lnx,f′(x)=-$\frac{2}{3}$x+2-$\frac{4}{3x}$=$\frac{-2(x-1)(x-2)}{3x}$,
令f′(x)>0,解得:1<x<2,令f′(x)<0,解得:x>2或0<x<1,
∴函數(shù)f(x)在(0,1),(2,+∞)遞減,在(1,2)遞增,
∴f(x)極大值=f(2)=$\frac{8}{3}$-$\frac{4}{3}$ln 2,
故答案為:$\frac{8}{3}$-$\frac{4}{3}$ln2.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、函數(shù)的極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {a,e} | B. | {b,c,d} | C. | {a,c,e} | D. | {c} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-4,2) | B. | (-2,0) | C. | (-4,0) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com