19.某企業(yè)有兩個(gè)分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:cm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個(gè)分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如表:
甲廠:
分組[29.86,
29.90 )
[29.90,
29.94)
[29.94,
29.98)
[29.9 8,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
頻數(shù)12638618292614
乙廠:
分組[29.86,
29.90)
[29.90,
29.94)
[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
頻數(shù)297185159766218
(1)試分別估計(jì)兩個(gè)分廠生產(chǎn)的零件的優(yōu)質(zhì)品率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”.
甲廠乙廠合計(jì)
優(yōu)質(zhì)品
非優(yōu)質(zhì)品
合計(jì)
附K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,
p(K2≥k)0.050.01
k3.8416.635

分析 (1)利用優(yōu)質(zhì)品數(shù)除以樣本容量,即可估計(jì)零件的優(yōu)質(zhì)品率;
(2)利用統(tǒng)計(jì)數(shù)據(jù)可填寫2×2列聯(lián)表,再利用公式,求出k,利用給出的數(shù)據(jù),即可得出結(jié)論.

解答 解:(1)甲廠抽查的產(chǎn)品中有360件優(yōu)質(zhì)品,從而甲廠生產(chǎn)的零件的優(yōu)質(zhì)品率估計(jì)為$\frac{360}{500}$=72%;
乙廠抽查的產(chǎn)品中有320件優(yōu)質(zhì)品,從而乙廠生產(chǎn)的零件的優(yōu)質(zhì)品率估計(jì)為$\frac{320}{500}$=64%.
(2)

甲廠乙廠合計(jì)
優(yōu)質(zhì)品360320680
非優(yōu)質(zhì)品140180320
合計(jì)5005001000
$k=\frac{1000×(360×180-320×140)^{2}}{500×500×680×320}$≈7.35>6.635,
所以有99%的把握認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”.

點(diǎn)評 本題重點(diǎn)考查獨(dú)立性檢驗(yàn)的應(yīng)用,解題的關(guān)鍵是正確統(tǒng)計(jì),運(yùn)用好公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,正三棱柱ABC-A1B1C1中,P,Q,D,E分別是所在棱的中點(diǎn),F(xiàn),G是分別BB1,CC1上的點(diǎn),滿足$\frac{BG}{{G{B_1}}}=\frac{CF}{{F{C_1}}}$=3.
(Ⅰ)證明:PQ∥平面DEFG;
(Ⅱ)若該三棱柱的所有棱長為2,求四棱錐Q-DEFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若cosθ=-$\frac{{\sqrt{5}}}{5}$,θ∈[0,π],則tanθ=( 。
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費(fèi)xi和年銷售量yi(i=1,2,3,..8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中:${w_i}=\sqrt{x_i}$    $\overline{w}$=$\sum_{i=1}^{8}$wi
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與$y=c+d\sqrt{x}$,哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(jù)(I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x,根據(jù)(II)的結(jié)果回答下列問題:
(i)當(dāng)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值時(shí)多少?
(ii)當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?并求出最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,點(diǎn)P為斜三棱柱ABC-A1B1C1的側(cè)棱BB1上一點(diǎn),PM⊥BB1交AA1于點(diǎn)M,PN⊥BB1交CC1于點(diǎn)N.
(1)求證:CC1⊥MN;
(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF•EFcos∠DFE.拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明.
(3)在(2)中,我們看到了平面圖形中的性質(zhì)類比到空間圖形的例子,這樣的例子還有不少.下面請觀察平面勾股定理的條件和結(jié)論特征,試著將勾股定理推廣到空間去.
勾股定理的類比三角形ABC四面體O-ABC
條件AB⊥ACOA、OB、OC兩兩垂直
結(jié)論AB2+AC2=BC2?
請?jiān)诖痤}紙上完成上表中的類比結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.北京某大學(xué)為第十八屆四中全會(huì)招募了30名志愿者(編號(hào)分別是1,2,…30號(hào)),現(xiàn)從中任意選取6人按編號(hào)大小分成兩組分配到江西廳、廣電廳工作,其中三個(gè)編號(hào)較小的人在一組,三個(gè)編號(hào)較大的在另一組,那么確保6號(hào)、15號(hào)與24號(hào)同時(shí)入選并被分配到同一廳的選取種數(shù)是( 。
A.25B.32C.60D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$sin(2x+\frac{π}{4})$
(1)求f(x)的單調(diào)增區(qū)間
(2)若$α∈(\frac{π}{2},\frac{3π}{4})$,且$f(\frac{α}{2})=\frac{{\sqrt{2}}}{10}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{2x+y≤1}\end{array}\right.$,記z=4x+y的最大值為a,則${∫}_{0}^{\frac{π}{a}}$(cos$\frac{x}{2}$-sin$\frac{x}{2}$)2dx=$\frac{π}{3}-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.請先閱讀:在等式cos2x=2cos2x-1(x∈R)的兩邊求導(dǎo),得(cos2x)′=(2cos2x-1)′,由求導(dǎo)法則,得(-sin2x)•2=4cosx•(-sinx),化簡得等式:sin2x=2cosx•sinx,利用上面的想法(或其他方法),求和$\sum_{k=1}^{n}$3k-1•k${C}_{n}^{k}$=n•4n-1

查看答案和解析>>

同步練習(xí)冊答案