12.若等差數(shù)列{an}滿足a1+a3=-2,a2+a4=10,則a5+a7的值是( 。
A.-22B.22C.-46D.46

分析 利用等差數(shù)列通項(xiàng)公式列出方程組,先求出首項(xiàng)和公差,由此能求出結(jié)果.

解答 解:∵等差數(shù)列{an}滿足a1+a3=-2,a2+a4=10,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}+2d=-2}\\{{a}_{1}+d+{a}_{1}+3d=10}\end{array}\right.$,
解得a1=-7,d=6,
∴a5+a7=a1+4d+a1+6d=-7+24-7+36=46.
故選:D.

點(diǎn)評(píng) 本題考查等差數(shù)列中兩項(xiàng)和的求法,考查等差數(shù)列通項(xiàng)公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法正確的是( 。
A.歸納推理,演繹推理都是合情合理B.合情推理得到的結(jié)論一定是正確的
C.歸納推理得到的結(jié)論一定是正確的D.合情推理得到的結(jié)論不一定正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若tan(π-a)=-$\frac{1}{2}$,則$\frac{sinα+7cosα}{cosα-2sinαtanα}$的值為(  )
A.-$\frac{13}{3}$B.-15C.$\frac{13}{3}$D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)函數(shù)f′(x)是偶函數(shù)f(x)的導(dǎo)函數(shù),當(dāng)x≠0時(shí),恒有xf′(x)>0,記a=f(log0.53),b=f(log25),c=f(log32),則a,b,c的大小關(guān)系為(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,a=3,b=5,sinA=$\frac{1}{3}$,則sinB=( 。
A.$\frac{1}{5}$B.$\frac{5}{9}$C.$\frac{\sqrt{5}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知復(fù)數(shù)z=a2-a+ai,若z是純虛數(shù),則實(shí)數(shù)a等于( 。
A.2B.1C.0或1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.y=Asin(ωx+φ)(ω>0,φ∈(0,π)的圖象的一段如圖所示,它的解析式是y=$\frac{2}{3}$sin(2x+$\frac{2π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若a,b,c,d∈R,則下列結(jié)論正確的是( 。
A.若a>b,則a2>b2B.若a>b,c>d,則ac>bd
C.若a<b<0,則$\frac{1}{a}$<$\frac{1}$D.若a>b>0,c<d<0,則$\frac{a}4zgpjxk$<$\frac{c}$

查看答案和解析>>

同步練習(xí)冊(cè)答案