【題目】已知函數(shù), ,其中.
(1)當(dāng)時,求函數(shù)的值域;
(2)若對任意,均有,求的取值范圍;
(3)當(dāng)時,設(shè),若的最小值為,求實數(shù)的值.
【答案】(1);(2) ;(3) .
【解析】試題分析:(1)當(dāng)a=0時, ,,借助換元法及二次函數(shù)圖象及性質(zhì)即可求函數(shù)g(x)的值域;
(2)分類討論,|f(x)|≤2,可化為,變量分離,構(gòu)建新函數(shù)求最值,即可求a的取值范圍;
(3)分類討論,利用配方法,結(jié)合的最小值為,求實數(shù)a的值.
試題解析:
(1)當(dāng)時, ,
因為,
所以, 的值域為
(2)若,
若時, 可化為
即,所以
因為在為遞增函數(shù),所以函數(shù)的最大值為,
因為(當(dāng)且僅當(dāng),即取“”)
所以的取值范圍是.
(3)因為當(dāng)時, ,
令, ,則 ,
當(dāng)時,即, ;
當(dāng)時, ,即,
因為,所以, .
若, ,此時,
若,即,此時,所以實數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,S表示△ABC的面積,若acosB+bcosA=csinC,S= (b2+c2﹣a2),則∠B=( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形中, , , , 為線段上一點(diǎn),且,沿邊上的中線將折起到的位置.
(Ⅰ)求證: ;
(Ⅱ)當(dāng)平面平面時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足若為等比數(shù)列,且
(1)求和;
(2)設(shè),記數(shù)列的前項和為
①求;
②求正整數(shù) k,使得對任意均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), , ,
(1)求證:函數(shù)在點(diǎn)處的切線恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(2)若在區(qū)間上恒成立,求的取值范圍;
(3)當(dāng)時,求證:在區(qū)間上,滿足恒成立的函數(shù)有無窮多個.(記)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時,函數(shù)解析式為 .
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),對任意實數(shù)m,n,都有f(m)f(n)=f(m+n),且當(dāng)x<0時,0<f(x)<1.
(1)證明:①f(0)=1;②當(dāng)x>0時,f(x)>1;③f(x)是R上的增函數(shù);
(2)設(shè)a∈R,試解關(guān)于x的不等式f(x2﹣3ax+1)f(﹣3x+6a+1)≤1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四組函數(shù)中表示同一個函數(shù)的是( )
A.f(x)=|x|與
B.f(x)=x0與g(x)=1
C. 與
D. 與
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時的x值
(2)求f(x)的單調(diào)減區(qū)間
(3)若x∈[﹣ , ]時,求f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com