已知p:|x-2|≤3,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分條件,求實數(shù)m的取值范圍.
考點:必要條件、充分條件與充要條件的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別設(shè)出A,B,由¬p是¬q的必要不充分條件,得出不等式組,解出即可.
解答: 解:由命題P可知:-1≤x≤5,
設(shè)A={x|-1≤x≤5},
因為命題q可知:1-m≤x≤m+1,
 設(shè)B={x|1-m≤x≤m+1},
∵¬p是¬q的必要不充分條件,
∴q是p的必要不充分條件,
∴A?B,
m>0
1-m≤-1
m+1≥5
,解得:m≥4,
∴m的范圍是:[4,+∞).
點評:本題考查了充分必要條件,四種命題的關(guān)系,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線y=2x與直線y=2x+5間的距離為( 。
A、
5
2
B、
5
C、5
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:
1
sin10°
-
3
cos10°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},若點(n,an)(n∈N*)在經(jīng)過點(8,4)的定直線l上,則數(shù)列{an}的前15項和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1+x2
,x∈(0,1).
(1)設(shè)x1,x2∈(0,1),證明:(x1-x2)•[f(x1)-f(x2)]≥0;
(2)設(shè)a,b,c∈R+,且a+b+c=1,求u=
3a2-a
1+a2
+
3b2-b
1+b2
+
3c2-c
1+c2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|2x>1},B={x|-4<x<1},則A∩B等于( 。
A、(
1
2
,1)
B、(1,+∞)
C、(-4,1)
D、(-∞,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
1
2
x2+bx+c.
(1)若f(x)在R上單調(diào)遞增,求b的取值范圍;
(2)若f(x)在x=1時取得極值,且x∈[-1,2]時,f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-2ax+2在區(qū)間(-∞,1]上遞減,則a的取值范圍是( 。
A、[1,+∞)
B、(-∞,-1]
C、(-∞,1]
D、[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M為橢圓
x2
9
+
y2
5
=1
上一動點,F(xiàn)為橢圓的右焦點,定點A(-1,2),則|MA|+
3
2
|MF|
的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案