定義在R上的偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,若f(2m-1)>f(3),則m的取值范圍為(  )
A、(2,+∞)
B、(-∞,-1)
C、(-1,2)
D、(-∞,-1)∪(2,+∞)
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由R上的偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,且f(2m-1)>f(3),可知|2m-1|>3既有2m-1>3或者2m-1<-3,故解得m>2或者m<-1.
解答: 解:∵在R上的偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,且f(2m-1)>f(3)
∴|2m-1|>3⇒2m-1>3或者2m-1<-3
既有m>2或者m<-1
故選:D.
點(diǎn)評(píng):本題主要考察了函數(shù)的奇偶性和單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

分別用區(qū)間,數(shù)軸把下列數(shù)值的范圍表示出來:
(1)-3<x<-1
(2)-
2
3
≤x≤0
(3)x≥-4
(4)x<2
(5)1<x≤3.5
(6)x≥0
(7)x≥0
(8)x<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙O的方程x2+y2+4x-2y=0,直線l的傾斜角為45°,圓心O到直線l的距離為
2

(1)求直線l的方程;
(2)判斷l(xiāng)與⊙O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合p={x|x>1},Q={x|x2-x>0},則下列結(jié)論正確的是( 。
A、p=QB、p?Q
C、p⊆QD、Q⊆p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)空間幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是( 。
A、8B、12C、16D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=3,S4=10.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

到兩定點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和為8的點(diǎn)的軌跡是( 。
A、橢圓B、線段C、圓D、直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=a
x
+
b
x
的圖象過點(diǎn)(1,3)和(4,3),
(1)求函數(shù)y=f(x)的解析式;
(2)用定義證明函數(shù)y=f(x)在[2,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組中兩個(gè)函數(shù)是同一函數(shù)的是( 。
A、f(x)=
x2-1
x-1
與g(x)=x+1
B、f(r)=πr2(r≥0)與g(x)=πx2(x≥0)
C、f(x)=logaax(a>0,且a≠1)與g(x)=alogax(a>0,且a≠1)
D、f(x)=|x|與g(t)=(
t
)2

查看答案和解析>>

同步練習(xí)冊(cè)答案