分析 (1)利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間即可;
(2)利用導(dǎo)數(shù)的幾何意義,求得曲線的切線斜率,寫(xiě)出切線方程,即可得證
解答 (1)解:當(dāng)a=1時(shí),f(x)=x2+x-lnx$⇒{f^'}(x)=2x+1-\frac{1}{x}=\frac{(2x-1)(x+1)}{x}(x>0)$
由${f^'}(x)>0⇒x>\frac{1}{2}$;${f^'}(x)<0⇒0<x<\frac{1}{2}$;
所以f(x)的遞減區(qū)間為$(0,\frac{1}{2})$,遞減區(qū)間為$(\frac{1}{2},+∞)$;
(2)證明:設(shè)切點(diǎn)為M(t,f(t)),則由切線過(guò)原點(diǎn)有切線斜率為$k=\frac{f(t)}{t}$
又由${f^'}(x)=2x+a-\frac{1}{x}⇒$切線斜率為$k=2t+a-\frac{1}{t}$,所以$\frac{f(t)}{t}=2t+a-\frac{1}{t}$
即t2+at-lnt=2t2+at-1⇒t2-1+lnt=0
所以t=1是方程t2-1+lnt=0的根
再證唯一性:設(shè)φ(t)=t2-1+lnt,${φ^'}(t)=2t+\frac{1}{t}>0$,φ(t)在(0,+∞)上單調(diào)遞增,且φ(1)=0,
所以方程t2-1+lnt=0有唯一解
綜上,切點(diǎn)的橫坐標(biāo)為1.
點(diǎn)評(píng) 本題主要考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過(guò)某點(diǎn)切線方程的斜率,會(huì)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 0 | 1 | 4 | 5 | 6 |
y | 1.3 | m | 3m | 5.6 | 7.4 |
A. | 1.426 | B. | 1.514 | C. | 1.675 | D. | 1.732 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{8}$個(gè)單位 | B. | 向左平移$\frac{π}{4}$個(gè)單位 | ||
C. | 向右平移$\frac{π}{8}$個(gè)單位 | D. | 向右平移$\frac{π}{4}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x${\;}^{\frac{1}{2}}$ | B. | y=$\frac{1}{{x}^{2}}$ | C. | y=x${\;}^{-\frac{1}{2}}$ | D. | y=$\sqrt{2}$x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a | B. | -a | C. | ±a | D. | 無(wú)法確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com