A. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
B. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{2}$對稱 | |
C. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
D. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{2}$對稱 |
分析 根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數(shù)、余弦函數(shù)的圖象的對稱性,
解答 解:把函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}}$)的圖象上的所有點向左平移$\frac{π}{12}$個單位長度,
得到函數(shù)y=g(x)=sin[2(x+$\frac{π}{12}$)+φ]=sin(2x+$\frac{π}{6}$+φ)的圖象.
再根據(jù)g(-x)=g(x),可得g(x)=sin(2x+$\frac{π}{6}$+φ)為偶函數(shù),故有$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,即+φ=kπ+$\frac{π}{3}$,k∈Z,
故φ=$\frac{π}{3}$,g(x)=sin(2x+$\frac{π}{6}$+$\frac{π}{3}$)=cos2x,
故y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{2}$對稱,
故選:D.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100海里 | B. | 100$\sqrt{2}$海里 | C. | 100$\sqrt{3}$海里 | D. | 200海里 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com