若x>1,則x+
1
x-1
的最小值是
 
考點:基本不等式
專題:計算題,不等式的解法及應(yīng)用
分析:x+
1
x-1
=x-1+
1
x-1
+1,利用基本不等式可求函數(shù)的最值.
解答: 解:∵x>1,
∴x+
1
x-1
=x-1+
1
x-1
+1≥2
(x-1)•
1
x-1
+1=3,
當(dāng)且僅當(dāng)x-1=
1
x-1
即x=2時取等號,
∴x=2時x+
1
x-1
取得最小值3,
故答案為:3.
點評:該題考查基本不等式求函數(shù)的最值,屬基礎(chǔ)題,熟記基本不等式求最值的條件是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=1+i,(其中i為虛數(shù)單位)其共軛復(fù)數(shù)
.
z
=(x+y)+(y-x)i,(x,y∈R)
(1)求x,y的值;
(2)若復(fù)數(shù)ω=(m2-1)+(m-x-y)i,(m∈R)為純虛數(shù),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在對人們的休閑方式的一次調(diào)查中,共調(diào)查了100人,其中女性55人,男性45人,女性中有47人主要的休閑方式是看電視,其余女性休閑方式是運動;男性中有30人主要休閑方式是看電視,其余男性休閑方式是運動
(1)根據(jù)以上數(shù)據(jù)完成下面2×2列聯(lián)表:
看電視運動總計
總計
(2)能否在犯錯誤的概率不超過0.025的前提下,認為性別與休閑方式有關(guān)系?參考公式與臨界值表:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+c)
(其中n=a+b+c+d)
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知數(shù)列{an}滿足:a1=1,an+an+1=4n,Sn是數(shù)列{an}的前n項和.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{
1
Sn+1-1
}的前n項和為Kn,證明:對于任意的n∈N*,都有Kn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=2an+1,且a1=1,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式ax2+bx+1>0的解集為{x|-3<x<2},則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>3,則函數(shù)f(x)=x3-ax2+1在(0,2)內(nèi)恰有
 
個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(
3
x+θ),θ∈(0,π),若函數(shù)F(x)=f(x)+f′(x)是奇函數(shù).則θ值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
a
b
=10,|
a
+
b
|=10,則|
b
|=
 

查看答案和解析>>

同步練習(xí)冊答案