16.已知PQ是圓x2+y2=100的動弦,|PQ|=12,則PQ中點的軌跡方程是( 。
A.x2+y2=8B.x2+y2=64C.x2+y2=36D.x2+y2=6

分析 設(shè)PQ中點為M,則OM⊥PQ,利用勾股定理可得|OM|,即可求出PQ中點的軌跡方程.

解答 解:設(shè)PQ中點為M,則OM⊥PQ,
∵PQ是圓x2+y2=100的動弦,|PQ|=12,
∴|OM|=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
∴PQ中點的軌跡方程是x2+y2=64,
故選:B.

點評 本題考查直線與圓的位置關(guān)系,考查勾股定理的運用,考查圓的方程,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在平面直角坐標(biāo)系中,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1(-1,0),F(xiàn)2(1,0),已知(1,e)在橢圓上,其中e為橢圓的離心率.
(I) 求橢圓的方程;
(Ⅱ)設(shè)A,B是橢圓上位于x軸上方的兩點,直線AF2與直線BF1交于點P,|PA|:|PF2|=|PF1|:|PB|=3:1,求直線AF1的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),設(shè)P為橢圓上一點,且∠F1PF2=60°,${S_{△P{F_1}{F_2}}}$=$\frac{{\sqrt{3}}}{3}$.
(Ⅰ)求b;
(Ⅱ)若a=2,A(0,b),是否存在以A為直角頂點的內(nèi)接于橢圓的等腰直角三角形?若存在,請求出共有幾個?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.書架上有3本科技書和5本文藝書,要求科技書不能放在一起,一共有14400種不同的方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.化簡:$\frac{\sqrt{1-sin\frac{π}{8}}}{sin\frac{π}{16}-cos\frac{π}{16}}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.曲線y=x3的拐點坐標(biāo)為(0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)y=loga(-1+ax)在[2,4]上是減函數(shù),則a的取值范圍是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知(1-2x)5(1+ax)4的展開式中x的系數(shù)為2,則實數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線方程為x2=2py(p>0),其焦點為F,點O為坐標(biāo)原點,過焦點F作斜率為k(k≠0)的直線與拋物線交于A,B兩點,過A,B兩點分別作拋物線的兩條切線,設(shè)兩條切線交于點M.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$;
(2)設(shè)直線MF與拋物線交于C,D兩點,且四邊形ACBD的面積為$\frac{32}{3}{p^2}$,求直線AB的斜率k.

查看答案和解析>>

同步練習(xí)冊答案