分析 (1)設(shè)橢圓方程,由焦點(diǎn)坐標(biāo)可得c=1,由$\overrightarrow{B{F}_{1}}$•$\overrightarrow{B{F}_{2}}$=2,可得2b2-a2=2,又a2-b2=1,由此可求橢圓方程;
(2)設(shè)M(x1,y1),N(x2,y2),不妨y1>0,y2<0,設(shè)△F1MN的內(nèi)切圓的徑R,則△F1MN的周長(zhǎng)=4a=8,${S}_{△{F}_{1}MN}$=(|MN|+|F1M|+|F1N|)R=4R,因此${S}_{△{F}_{1}MN}$最大,R就最大.設(shè)直線l的方程為x=my+1,與橢圓方程聯(lián)立,從而可表示△F1MN的面積,利用換元法,借助于導(dǎo)數(shù),即可求得結(jié)論
解答 解:(1)設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),由焦點(diǎn)坐標(biāo)可得c=1,
由$\overrightarrow{B{F}_{1}}$•$\overrightarrow{B{F}_{2}}$=2,可得2b2-a2=2,
又a2-b2=1,解得a=2,b=$\sqrt{3}$,
故橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)設(shè)M(x1,y1),N(x2,y2),不妨y1>0,y2<0,設(shè)△F1MN的內(nèi)切圓的徑R,
則△F1MN的周長(zhǎng)l=4a=8,${S}_{△{F}_{1}MN}=\frac{1}{2}$(|MN|+|F1M|+|F1N|)R=4R.
因此${S}_{△{F}_{1}MN}$最大,R就最大,
由題知,直線l的斜率不為零,可設(shè)直線l的方程為x=my+1,
由$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3m2+4)y2+6my-9=0,
得${y}_{1}=\frac{-3m+6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,${y}_{2}=\frac{-3m-6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,
則${S}_{△{F}_{1}MN}=\frac{1}{2}$|F1F2|(y1-y2)=y1-y2=$\frac{12\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,
令t=$\sqrt{{m}^{2}+1}$,則t≥1,
則${S}_{△{F}_{1}MN}$=$\frac{12\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$=$\frac{12t}{3{t}^{2}+1}$=$\frac{12}{3t+\frac{1}{t}}$,
令f(t)=3t+$\frac{1}{t}$,則f′(t)=3-$\frac{1}{{t}^{2}}$,
當(dāng)t≥1時(shí),f′(t)≥0,f(t)在[1,+∞)上單調(diào)遞增,有f(t)≥f(1)=4,${S}_{△{F}_{1}MN}$≤3,
即當(dāng)t=1,m=0時(shí),${S}_{△{F}_{1}MN}$≤3,
${S}_{△{F}_{1}MN}$=4R,∴Rmax=$\frac{3}{4}$,這時(shí)所求內(nèi)切圓面積的最大值為$\frac{9}{16}$π.
故直線l:x=1,△F1MN內(nèi)切圓面積的最大值為$\frac{9}{16}$π.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查三角形面積的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,分析得出${S}_{△{F}_{1}MN}$最大,R就最大是關(guān)鍵,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com