【題目】如圖,已知四邊形是正方形,平面,,,分別為,,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面.

【答案】(Ⅰ)證明見解析;(Ⅱ)證明見解析.

【解析】試題分析: (Ⅰ)別取的中點(diǎn),的中點(diǎn).連結(jié),,.由已知得四邊形是平行四邊形,由此能證明平面;
(Ⅱ)由線面垂直得,由已知得,從而平面,由三角形中位線定理得,從而平面,由此能證明平面平面.

試題解析:(Ⅰ)分別取的中點(diǎn),的中點(diǎn).連結(jié),.

因?yàn)?/span>,分別為,的中點(diǎn),所以,,

因?yàn)?/span>平行且相等,所以平行且等于

故四邊形是平行四邊形.所以.

又因?yàn)?/span>平面,平面

所以平面.

(Ⅱ)證明:因?yàn)?/span>平面,平面,所以.

因?yàn)?/span>,,所以平面.

因?yàn)?/span>,分別為、的中點(diǎn),所以.

所以平面.

因?yàn)?/span>平面,所以平面平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記.

1)求數(shù)列與數(shù)列的通項(xiàng)公式;

2)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù),都有;

3)設(shè)數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得成立?若存在,找出一個(gè)正整數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)其圖象上相鄰兩個(gè)最高點(diǎn)之間的距離為

1的值;

2將函數(shù)的圖象向右平移個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)不變,得到的圖象,求上的單調(diào)增區(qū)間;

32的條件下,求方程內(nèi)所有實(shí)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知.()若的面積等于,求)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某測(cè)量人員為了測(cè)量西江北岸不能到達(dá)的兩點(diǎn),之間的距離,她在西江南岸找到一個(gè)點(diǎn),從點(diǎn)可以觀察到點(diǎn),;找到一個(gè)點(diǎn),從點(diǎn)可以觀察到點(diǎn),;找到一個(gè)點(diǎn),從點(diǎn)可以觀察到點(diǎn),;并測(cè)量得到數(shù)據(jù):,,,百米.

(1)求的面積;

(2)求之間的距離的平方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校微信公眾號(hào)收到非常多的精彩留言,學(xué)校從眾多留言者中抽取了100人參加“學(xué)校滿意度調(diào)查”,其留言者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:

(1)求這100位留言者年齡的平均數(shù)和中位數(shù);

(2)學(xué)校從參加調(diào)查的年齡在的留言者中,按照分層抽樣的方法,抽出了6人參加“精彩留言”經(jīng)驗(yàn)交流會(huì),贈(zèng)與年齡在的留言者每人一部?jī)r(jià)值1000元的手機(jī),年齡在的留言者每人一套價(jià)值700元的書,現(xiàn)要從這6人中選出3人作為代表發(fā)言,求這3位發(fā)言者所得紀(jì)念品價(jià)值超過2300元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,a3b3=2.證明:

(1)(ab)(a5b5)≥4;

(2)ab≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F為拋物線C:x2=2py (p>0) 的焦點(diǎn),點(diǎn)A(m,3)在拋物線C上,且|AF|=5,若點(diǎn)P是拋物線C上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P到直線的距離為,設(shè)點(diǎn)P到直線的距離為

(1)求拋物線C的方程;

(2) 求的最小值;

(3)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;

(2)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率..

查看答案和解析>>

同步練習(xí)冊(cè)答案