【題目】函數(shù)其圖象上相鄰兩個最高點之間的距離為

1的值;

2將函數(shù)的圖象向右平移個單位,再將所得圖象上各點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到的圖象,求上的單調(diào)增區(qū)間;

32的條件下,求方程內(nèi)所有實根之和.

【答案】(1)(2)單調(diào)增區(qū)間為、(3)

【解析】

化成再根據(jù)題目即可得出第一問。根據(jù)三角函數(shù)變換,得出,再根據(jù)三角函數(shù)的性質(zhì)即可得出。

解:1函數(shù),

其圖象上相鄰兩個最高點之間的距離為,,

2將函數(shù)的向右平移個單位,可得的圖象;

再將所得圖象上各點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到的圖象.

,可得,

,求得,

上的單調(diào)增區(qū)間為

32的條件下,的最小正周期為,

內(nèi)恰有2個周期,

內(nèi)恰有4個零點,設(shè)這4個零點分別為,,

由函數(shù)的圖象特征可得,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點都在圓C.

1)求圓C的方程;

2)若圓C與直線交于A,B兩點,且,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2022年第24屆冬奧會將在北京舉行。為了推動我國冰雪運動的發(fā)展,京西某區(qū)興建了“騰越冰雪運動基地。通過對來“騰越參加冰雪運動的100員運動員隨機抽樣調(diào)查,他們的身份分布如下: 注:將表中頻率視為概率。

身份

小學(xué)生

初中生

高中生

大學(xué)生

職工

合計

人數(shù)

40

20

10

20

10

100

對10名高中生又進行了詳細分類如下表:

年級

高一

高二

高三

合計

人數(shù)

4

4

2

10

(1)求來“騰越參加冰雪運動的人員中高中生的概率;

(2)根據(jù)統(tǒng)計,春節(jié)當(dāng)天來“騰越”參加冰雪運動的人員中,小學(xué)生是340人,估計高中生是多少人?

(3)在上表10名高中生中,從高二,高三6名學(xué)生中隨機選出2人進行情況調(diào)查,至少有一名高三學(xué)生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列說法正確的是(

A.是函數(shù)的零點,則的整數(shù)倍

B.函數(shù)的圖象關(guān)于點對稱

C.函數(shù)的圖象與函數(shù)的圖象相同

D.函數(shù)的圖象可由的圖象先向上平移個單位長度,再向左平移個單位長度得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校學(xué)生喜歡吃零食是否與性別有關(guān),隨機對此校100人進行調(diào)查,得到如下的列表:已知在全部100人中隨機抽取1人,抽到不喜歡吃零食的學(xué)生的概率為

喜歡吃零食

不喜歡吃零食辣

合計

男生

10

女生

20

合計

100

(Ⅰ)請將上面的列表補充完整;

(Ⅱ)是否有99.9%以上的把握認為喜歡吃零食與性別有關(guān)?說明理由.

下面的臨界值表供參考:,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,,的中點,是棱上的點,且.

(Ⅰ)求證:平面底面;

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形是正方形,平面,,,,,分別為,的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的上頂點為,且離心率為.

1)求橢圓的方程;

2)設(shè)是曲線上的動點,關(guān)于軸的對稱點為,點,直線與曲線的另一個交點為(不重合),過作直線,垂足為,是否存在定點,使為定值?若存在求出的坐標(biāo),不存在說明理由?

查看答案和解析>>

同步練習(xí)冊答案