17.已知F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),Q是雙曲線上除頂點(diǎn)外的任意一點(diǎn).從某一焦點(diǎn)引∠F1QF2的平分線的垂線,垂足為P.則P的軌跡為( 。
A.拋物線B.橢圓C.D.雙曲線

分析 利用已知條件判斷出△MQF1為等腰三角形,利用雙曲線的定義及等量代換得到MF2=2a,利用三角形的中位線得到OP=a,利用圓的定義判斷出點(diǎn)的軌跡.

解答 解:設(shè)O為F1F2的中點(diǎn)
延長(zhǎng)F1P交QF2于M,連接OP
據(jù)題意知△MQF1為等腰三角形
所以QF1=QM
∵|QF1-QF2|=2a
∴|QM-QF2|=2a
即MF2=2a
∵OP為△F1F2M的中位線
∴OP=a
故點(diǎn)P的軌跡為以O(shè)為圓心,以a為半徑的圓.
故選:C

點(diǎn)評(píng) 本題考查雙曲線的定義、原點(diǎn)定義及等量代換的數(shù)學(xué)方法、三角形的中位線性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知A船在燈塔C北偏東80°處,距離燈塔C為2km,B船在燈塔C北偏西40°,A、B兩船的距離為3km,則∠ABC的余弦值$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知圓C:x2+y2-2x-8=0,直線l:x+ay-3a=0.
(1)當(dāng)直線l與圓C相切時(shí),求實(shí)數(shù)a的值;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且AB=4$\sqrt{2}$時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.為迎接2013年全運(yùn)會(huì)的到來(lái),組委會(huì)在大連市招募了100名志愿者,其中男、女志愿者各50名,調(diào)查是否喜歡運(yùn)動(dòng)得到如下統(tǒng)計(jì)數(shù)據(jù).由于一些原因,丟失了其中四個(gè)數(shù)據(jù),目前知道這四個(gè)數(shù)據(jù)c,a,b,d恰好成遞增的等差數(shù)列.
喜歡運(yùn)動(dòng)不喜歡運(yùn)動(dòng)總計(jì)
ab50
cd50
總計(jì)3070100
(Ⅰ)將聯(lián)表中數(shù)據(jù)補(bǔ)充完整,并判斷是否有95%的把握認(rèn)為性別與運(yùn)動(dòng)有關(guān)?
(Ⅱ) 調(diào)查中顯示喜歡運(yùn)動(dòng)的男志愿者中有10%懂得醫(yī)療救護(hù),而喜歡運(yùn)動(dòng)的女志愿者中有40%懂得醫(yī)療救護(hù),從中抽取2人組成醫(yī)療救護(hù)小組,則這個(gè)醫(yī)療救護(hù)小組恰好是一男一女的概率有多大?
附:χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥k)0.050.001
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E,F(xiàn)分別是AB,PD的中點(diǎn).
(1)求證:AF∥平面PEC;
(2)求PC與平面PAD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.命題p:$\frac{x^2}{m+4}+\frac{y^2}{m-2}$=1表示雙曲線方程,命題q:函數(shù)f(m)=$\frac{1}{{\sqrt{-m-2}}}$有意義.若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列關(guān)于算法的說(shuō)法中,正確的是( 。
A.算法是某個(gè)問(wèn)題的解決過(guò)程B.算法執(zhí)行后可以不產(chǎn)生確定的結(jié)果
C.解決某類問(wèn)題的算法不是唯一的D.算法可以無(wú)限的操作下去不停止

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)g(x)=$\sqrt{2{x^2}-3x+1}$,則函數(shù)g(x)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,$\frac{1}{2}$]∪[2,+∞)B.[$\frac{1}{2}$,1]C.(-∞,$\frac{1}{2}$]∪[1,+∞)D.(-∞,-1]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.定義運(yùn)算(a,b)?(c,d)=ac-bd,則符合條件(z,1-2i)?(-1,1+i)=0的復(fù)數(shù)z的所對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案