精英家教網 > 高中數學 > 題目詳情

【題目】已知定義域為的函數是奇函數

(Ⅰ)求值;

(Ⅱ)判斷并證明該函數在定義域上的單調性;

(Ⅲ)若對任意的,不等式恒成立,求實數的取值范圍;

(Ⅳ)設關于的函數有零點,求實數的取值范圍.

【答案】(Ⅰ) ;(Ⅱ)答案見解析;(Ⅲ) (Ⅳ).

【解析】試題分析:(1)根據奇函數性質得,解得值;(2)根據單調性定義,作差通分,根據指數函數單調性確定因子符號,最后根據差的符號確定單調性(3)根據奇偶性以及單調性將不等式化為一元二次不等式恒成立問題,利用判別式求實數的取值范圍;(4)根據奇偶性以及單調性將方程轉化為一元二次方程有解問題,根據二次函數圖像與性質求值域,即得實數的取值范圍.

試題解析:(Ⅰ)由題設,需,∴,∴,

經驗證, 為奇函數,∴.

(Ⅱ)減函數

證明:任取, ,且,則,

,

,即

∴該函數在定義域上是減函數.

(Ⅲ)由

是奇函數,∴

由(Ⅱ)知, 是減函數

∴原問題轉化為,即對任意恒成立,

,得即為所求.

(Ⅳ)原函數零點的問題等價于方程

由(Ⅱ)知, ,即方程有解

∴當時函數存在零點.

點睛:利用函數性質解不等式:首先根據函數的性質把不等式轉化為的形式,然后根據函數的單調性去掉“”,轉化為具體的不等式(組),此時要注意的取值應在外層函數的定義域內.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,正四棱錐中, 是正方形, 是正方形的中心, 底面 的中點.

(I)證明: 平面;

(II)證明:平面平面;

(III)已知: ,求點到面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】大西洋鮭魚每年都要逆流而上,游回產地產卵,研究鮭魚的科學家發(fā)現鮭魚的游速單位: 與其耗氧量單位數之間的關系可以表示為函數,其中為常數,已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為時,其耗氧量為2700個單位.

1)求出游速與其耗氧量單位數之間的函數解析式;

(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為的函數是奇函數.

(1)求的值;

(2)判斷函數的單調性并證明;

(2)若關于的不等式有解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側面ABB1A1為矩形,AB=2,AA1=2 ,D是AA1的中點,BD與AB1交于點O,且CO⊥平面ABB1A1

(1)證明:CD⊥AB1
(2)若OC=OA,求直線CD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)滿足:對于st∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),則稱函數f (x)“T函數”.

(I)試判斷函數f1(x)=x2f2(x)=lg(x+1)是否是“T函數”,并說明理由;

(Ⅱ)f (x)“T函數”,且存在x0∈[0,+∞),使f(f(x0))=x0.求證f (x0) =x0;

(Ⅲ)試寫出一個“T函數”f(x),滿足f(1)=1,且使集合{y|y=f(x)0≤x≤1)中元素的個數最少.(只需寫出結論

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在棱長為4的正方體ABCD﹣A1B1C1D1中,點E是棱CC1的中點,則異面直線D1E與AC所成角的余弦值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設F1 , F2分別是C: + =1(a>b>0)的左,右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.
(1)若直線MN的斜率為 ,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:

甲商場:顧客轉動如圖所示圓盤,當指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎.

乙商場:從裝有3個白球3個紅球的盒子中一次性摸出2個球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即為中獎.問:購買該商品的顧客在哪家商場中獎的可能性大?

查看答案和解析>>

同步練習冊答案