【題目】設橢圓的左頂點為,且橢圓與直線相切,
(1)求橢圓的標準方程;
(2)過點的動直線與橢圓交于兩點,設為坐標原點,是否存在常數(shù),使得?請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】“特羅卡”是靶向治療肺癌的一種藥物,為了研究其療效,醫(yī)療專家借助一些肺癌患者,進行人體試驗,得到如右丟失一些數(shù)據(jù)的2×2列聯(lián)表:
疫苗效果試驗列
感染 | 未感染 | 總計 | |
沒服用 | 20 | 30 | 50 |
服用 | X | y | 50 |
總計 | M | N | 100 |
設從沒服用該藥物的肺癌患者中任選兩人,未感染人數(shù)為ξ;從服用該藥物的肺癌患者中任選兩人,未感染人數(shù)為η,研究人員曾計算過得出:P(ξ=0)= P(η=0).
(1)求出列聯(lián)表中數(shù)據(jù)x,y,M,N的值.
(2)能否有97.5%的把握認為該藥物對治療肺癌有療效嗎?
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
注:K2= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)定義在實數(shù)集R上的奇函數(shù),當x≥0時,函數(shù)y=f(x)的圖象如圖所示(拋物線的一部分).
(1)在原圖上畫出x<0時函數(shù)y=f(x)的示意圖;
(2)求函數(shù)y=f(x)的解析式(不要求寫出解題過程);
(3)寫出函數(shù)y=|f(x)|的單調(diào)遞增區(qū)間(不要求寫出解題過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如表中給出了2011年~2015年某市快遞業(yè)務總量的統(tǒng)計數(shù)據(jù)(單位:百萬件)
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
快遞業(yè)務總量 | 34 | 55 | 71 | 85 | 105 |
(1)在圖中畫出所給數(shù)據(jù)的折線圖;
(2)建立一個該市快遞量y關于年份代碼x的線性回歸模型;
(3)利用(2)所得的模型,預測該市2016年的快遞業(yè)務總量.
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:
斜率: ,縱截距: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知中心在原點,離心率為的橢圓的一個焦點為圓: 的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓上一點,過作兩條斜率之積為的直線, ,當直線, 都與圓相切時,求的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù) 是定義在(﹣1,1)上的奇函數(shù),且 .
(1)確定函數(shù)的解析式;
(2)證明函數(shù)f(x)在(﹣1,1)上是增函數(shù);
(3)解不等式f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關,現(xiàn)采集到某城市周一至周五某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量x(萬輛) | 50 | 51 | 54 | 57 | 58 |
PM2.5的濃度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)根據(jù)上表數(shù)據(jù),請在如圖坐標系中畫出散點圖;
(2)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程 ;(保留2位小數(shù))
(3)若周六同一時間段車流量是25萬輛,試根據(jù)(2)求出的線性回歸方程預測,此時PM2.5的濃度為多少(保留整數(shù))?
參考公式: = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】五一節(jié)期間,某商場為吸引顧客消費推出一項優(yōu)惠活動,活動規(guī)則如下:消費額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應金額的返券.(假定指針等可能地停在任一位置,指針落在區(qū)域的邊界時,重新轉(zhuǎn)一次)指針所在的區(qū)域及對應的返劵金額見表.
例如:消費218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費后獲得n次轉(zhuǎn)動轉(zhuǎn)盤的機會,已知他每轉(zhuǎn)一次轉(zhuǎn)盤指針落在區(qū)域邊界的概率為p,每次轉(zhuǎn)動轉(zhuǎn)盤的結(jié)果相互獨立,設ξ為顧客甲轉(zhuǎn)動轉(zhuǎn)盤指針落在區(qū)域邊界的次數(shù),ξ的數(shù)學期望Eξ= ,方差Dξ= ,求n、p的值;
(2)顧客乙消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為η(元).求隨機變量η的分布列和數(shù)學期望.
指針位置 | A區(qū)域 | B區(qū)域 | C區(qū)域 |
返券金額(單位:元) | 60 | 30 | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com