分析 (1)根據(jù)三角恒等變換化簡sinB(tanA+tanC)=tanAtanC,再利用正弦定理可得b2=ac;
(2)根據(jù)題意求出a、c和b的值,利用余弦定理求出cosB,再根據(jù)同角的三角函數(shù)關(guān)系求出sinB,計(jì)算△ABC的面積即可.
解答 解:(1)證明:在△ABC中,由于sinB(tanA+tanC)=tanAtanC,
所以sinB($\frac{sinA}{cosA}$+$\frac{sinC}{cosC}$)=$\frac{sinA}{cosA}$•$\frac{sinC}{cosC}$,
因此sinB(sinAcosC+cosAsinC)=sinAsinC;
又A+B+C=π,
所以sin(A+C)=sinB,
因此sin2B=sinAsinC,
由正弦定理可得b2=ac;-----(6分)
(2)因?yàn)閍=2c=2,
所以a=2,c=1,
又b2=ac,所以b=$\sqrt{2}$;
由余弦定理得cosB=$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$=$\frac{3}{4}$,
又因?yàn)?<B<π,所以sinB=$\frac{\sqrt{7}}{4}$;
所以△ABC的面積為S=$\frac{1}{2}$acsinB=$\frac{\sqrt{7}}{4}$.-----(12分)
點(diǎn)評 本題考查了三角恒等變換以及正弦、余弦定理的應(yīng)用問題,是綜合性題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{a}$<$\frac{1}$ | B. | a2>ab | C. | $\frac{1}{{a{b^2}}}$>$\frac{1}{{{a^2}b}}$ | D. | a2>b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{2π}{3}$,0) | B. | ($\frac{2π}{3}$,0) | C. | ($\frac{π}{12}$,0) | D. | (-$\frac{π}{6}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com