12.“p∨q為真”是“¬p為假”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

分析 ¬p為假,可得:p為真.由于“p∨q為真”,反之不成立,即可判斷出結(jié)論.

解答 解:∵¬p為假,∴p為真,∴“p∨q為真”,反之不成立,可能q為真.
∴“p∨q為真”是“¬p為假”的必要不充分條件.
故選:B.

點(diǎn)評 本題考查了簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A,B,C的對邊分別是a,b,c,向量$\overrightarrow m=(5a-4c,4b)$與$\overrightarrow n=(cosB,-cosC)$互相垂直.
(Ⅰ)求cosB的值;
(Ⅱ)若$c=5,b=\sqrt{10}$,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在直四棱柱ABCD-A1B1C1D1中,∠BAD=60°,AB=BD,BC=CD.
(1)求證:平面ACC1A1⊥平面A1BD;
(2)AB=AA1=2,求三棱錐B1-A1BD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式|x+1|•(2x-1)≥0的解集為( 。
A.{x|x≥$\frac{1}{2}$}B.{x|x≤-1或x≥$\frac{1}{2}$}C.{x|x=-1或x≥$\frac{1}{2}$}D.{x|x≤$\frac{1}{2}$或x≥-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的漸近線與圓C:${(x-1)^2}+{y^2}=\frac{1}{2}$相切,且圓C的圓心是雙曲線的其中一個(gè)焦點(diǎn),則雙曲線的實(shí)軸長為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖是一個(gè)算法的流程圖,最后輸出的S=127

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosα}\\{y=4sinα}\end{array}\right.$(α為參數(shù),0≤α<2π),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=a-2t}\\{y=2\sqrt{3}t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)當(dāng)a=0時(shí),求直線l和圓C交點(diǎn)的直角坐標(biāo);
(Ⅱ)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,若直線l與圓C交于P、Q兩點(diǎn),若Q間的劣弧長為$\frac{8π}{3}$,求直線l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖:拋物線y2=x與直線x=ty-1交于A,B兩點(diǎn),點(diǎn)B關(guān)于x軸的對稱點(diǎn)為C,則直線AC在x軸上的截距( 。
A.1B.$\frac{1}{2}$
C.$\frac{1}{4}$D.不是定值,與t的值相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.運(yùn)行如圖所示的流程圖,則輸出的結(jié)果S是$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案