【題目】已知函數(shù)fx)的定義域為R,當(dāng)x0時滿足:①fx)﹣2f(﹣x)=0;②對任意x10,x20,x1x2有(x1x2)(fx1)﹣fx2))>0恒成立:③f4)=2f2)=2,則不等式x[fx)﹣1]0的解集為_____(用區(qū)間表示)

【答案】.

【解析】

根據(jù),求得f(﹣4)=1,,由可知函數(shù)fx)在(0,+∞)上為增函數(shù),結(jié)合題意,可以判斷出fx)在(﹣0)上為減函數(shù),將不等式x[fx)﹣1]0轉(zhuǎn)化為不等式組,從而確定出結(jié)果.

根據(jù)題意,當(dāng)x0時滿足fx)﹣2f(﹣x)=0,即fx)=2f(﹣x),

又由f4)=2f2)=2,則f(﹣4)=1

若對任意x10,x20x1x2有(x1x2)(fx1)﹣fx2))>0恒成立,則fx)在(0,+∞)上為增函數(shù),

設(shè)x1x20,則﹣x1>﹣x20,有,

,所以,

fx)在(﹣,0)上為減函數(shù),

x[fx)﹣1]0;

分析可得:﹣4x0,即不等式的解集為

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)用五點法作出在長度為一個周期的閉區(qū)間上的簡圖;

2)寫出的對稱中心與單調(diào)遞增區(qū)間,并求振幅、周期、頻率、相位及初相;

3)求的最大值以及取得最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊邊長為的正方形鐵皮,將其四個角各截去一個邊長為的小正方形,然后折成一個無蓋的盒子.

(1)求出盒子的體積為自變量的函數(shù)解析式,并寫出這個函數(shù)的定義域;

(2)如果要做一個容積是的無蓋盒子,那么截去的小正方形的邊長是多少(精確度0.01,結(jié)果保留一位小數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓的直徑,是圓上除外的一點,平面,四邊形為平行四邊形,,

1)求證:平面

(2)當(dāng)三棱錐體積取最大值時,求此刻點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)), ).

(1)如果是關(guān)于的不等式的解,求實數(shù)的取值范圍;

(2)判斷的單調(diào)性,并說明理由;

(3)證明:函數(shù)存在零點q,使得成立的充要條件是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過拋物線y22px(p0)的焦點F的直線交拋物線于點A、B,交其準(zhǔn)線l于點C,若|BC|2|BF|,且|AF|3,則此拋物線的方程為(  )

A.y29xB.y26x

C.y23xD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】省環(huán)保廳對、、三個城市同時進行了多天的空氣質(zhì)量監(jiān)測,測得三個城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個,三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個數(shù)如下表所示:

優(yōu)(個)

28

良(個)

32

30

已知在這180個數(shù)據(jù)中隨機抽取一個,恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.

(1)現(xiàn)按城市用分層抽樣的方法,從上述180個數(shù)據(jù)中抽取30個進行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個數(shù);

(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個正三棱臺,而且下底面邊長為2,上底面邊長和側(cè)棱長都為1.O分別是下底面與上底面的中心.

1)求棱臺的斜高;

2)求棱臺的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,軸上的點.

(1)過點作直線相切,求切線的方程;

(2)如果存在過點的直線與拋物線交于,兩點,且直線的傾斜角互補,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案