A. | 直角三角形 | B. | 等腰三角形 | ||
C. | 等腰直角三角形 | D. | 等腰三角形或直角三角形 |
分析 由正弦定理得$\frac{si{n}^{2}A}{si{n}^{2}B}$=$\frac{tanA}{tanB}$,求得sinAcosA=sinBcosB,進(jìn)而可知sin2A=sin2B,又因?yàn)锳,B為三角形內(nèi)角,所以2A=2B或2A+2B=180°即A=B或A+B=90°,最后判斷出三角形的形狀.
解答 解:∵$\frac{{a}^{2}}{^{2}}$=$\frac{tanA}{tanB}$,
由正弦定理得$\frac{si{n}^{2}A}{si{n}^{2}B}$=$\frac{tanA}{tanB}$,即$\frac{sinA}{sinB}$=$\frac{cosA}{cosB}$,
∴sinAcosA=sinBcosB,
∴sin2A=sin2B,
又∵A,B為三角形內(nèi)角,
∴2A=2B或2A+2B=180°即A=B或A+B=90°,
∴△ABC是等腰三角形或直角三角形,
故選:D.
點(diǎn)評 本題主要考查了正弦定理,三角形內(nèi)角和定理、誘導(dǎo)公式的應(yīng)用.注意對通過邊角問題的變化來解決解三角形問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12}{13}$ | B. | $-\frac{12}{13}$ | C. | $-\frac{13}{12}$ | D. | $\frac{13}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1] | B. | [1,e] | C. | [1,1+e] | D. | [e,e+1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com