分析 利用正弦定理化簡(jiǎn)已知的第一個(gè)等式,得到a+b=4c,代入第二個(gè)等式中計(jì)算,即可求出c的長(zhǎng),利用三角形的面積公式表示出三角形ABC的面積S,代入已知的等式中,利用完全平方公式變形后,將a+b=4代入化簡(jiǎn),即可求出cosC的值.
解答 解:△ABC中,∵sinA+sinB-4sinC=0,
∴a+b=4c,
∵△ABC的周長(zhǎng)L=5,
∴a+b+c=5,∴c=1,a+b=4.
∵面積S=$\frac{16}{5}$-$\frac{1}{5}$(a2+b2),
∴$\frac{1}{2}$absinC=$\frac{16}{5}$-$\frac{1}{5}$(a2+b2)=$\frac{16}{5}$-$\frac{1}{5}$[(a+b)2-2ab]=$\frac{2}{5}$ab,
∴sinC=$\frac{4}{5}$,
∵c<a+b,C是銳角,
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.
點(diǎn)評(píng) 此題考查了正弦定理,三角形的面積公式,完全平方公式的運(yùn)用,熟練掌握正弦定理是解本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2n | B. | 2n-1 | C. | 2n-1 | D. | 2n-1-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M∩N=N | B. | M∩(∁UN)=∅ | C. | M∪N=U | D. | M⊆(∁UN) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{2}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變) | |
B. | 向左平移$\frac{π}{2}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(橫坐標(biāo)不變) | |
C. | 向左平移$\frac{π}{4}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的$\frac{1}{2}$倍(橫坐標(biāo)不變) | |
D. | 向左平移$\frac{π}{4}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com