分析 (1)利用三角函數(shù)的圖象和性質(zhì)求出A,ω和φ的值即可得到結(jié)論.
(2)化簡函數(shù)g(x),解方程即可得到結(jié)論.
解答 解:(1)f(x)=Asin2(ωx+φ)=A•$\frac{1-cos(2ωx+2φ)}{2}$=-$\frac{A}{2}$cos(2ωx+2φ)+$\frac{A}{2}$,
∵f(x)圖象經(jīng)過最高點(diǎn)(1,2),且相鄰兩對稱軸間的距離為2.
∴A=2,$\frac{T}{2}$=2,即T=4=$\frac{2π}{2ω}$,則ω=$\frac{π}{4}$,
即f(x)=-cos($\frac{π}{2}$x+2φ)+1,
當(dāng)x=1時(shí),$\frac{π}{2}$+2φ=2kπ+π,
則φ=kπ+$\frac{π}{4}$,
∵0<φ<$\frac{π}{2}$,
∴當(dāng)k=0時(shí),φ=$\frac{π}{4}$,
則f(x)=-cos($\frac{π}{2}$x+$\frac{π}{2}$)+1=sin$\frac{π}{2}$x+1.
(2)g(x)=f(x)+f(1-x)=sin$\frac{π}{2}$x+1+sin$\frac{π}{2}$(1-x)+1=2+sin$\frac{π}{2}$x+cos$\frac{π}{2}$x=2+$\sqrt{2}$sin($\frac{π}{2}$x+$\frac{π}{4}$)
由g(t)=3得2+$\sqrt{2}$sin($\frac{π}{2}$t+$\frac{π}{4}$)=3,
即$\sqrt{2}$sin($\frac{π}{2}$t+$\frac{π}{4}$)=1,
即sin($\frac{π}{2}$t+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
∵t∈[-3,3],
∴$\frac{π}{2}$t+$\frac{π}{4}$∈[-$\frac{5π}{4}$,$\frac{7π}{4}$],
∴$\frac{π}{2}$t+$\frac{π}{4}$=-$\frac{5π}{4}$或$\frac{π}{4}$或$\frac{3π}{4}$,
則t=-3,或t=0,或t=1.
點(diǎn)評 本題主要考查三角函數(shù)解析式的求解,以及三角函數(shù)函數(shù)的圖象和性質(zhì),綜合性較強(qiáng),運(yùn)算量較大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{π}{2}$) | B. | ($\frac{π}{2}$,π) | C. | (π,$\frac{3π}{2}$) | D. | ($\frac{3π}{2}$,2π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=$\frac{π}{4}$,b=-$\frac{π}{4}$ | B. | a=$\frac{2π}{3}$,b=$\frac{π}{6}$ | C. | a=$\frac{π}{3}$,b=$\frac{π}{6}$ | D. | a=$\frac{5π}{6}$,b=$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{\sqrt{3}}{3}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com