精英家教網 > 高中數學 > 題目詳情
14.已知集合A={x|1<x<5},B={x|1<2x-2<16},C={x|y=ln(a-x)},全集為實數集R.
(1)求A∪B,(∁RA)∩B;
(2)若A∩C=∅,求實數a的范圍.

分析 (1)求出B中不等式的解集確定出B,找出A與B的并集,求出A補集與B的交集即可;
(2)表示出C中x的范圍,根據A與C的交集為空集,確定出a的范圍即可.

解答 解:(1)∵A={x|1<x<5},B={x|1<2x-2<16}={x|20<2x-2<24}={x|0<x-2<4}={x|2<x<6},
∴A∪B={x|1<x<6},∁RA={x|x≤1或x≥5},
則(∁RA)∩B={x|5≤x<6};
(2)∵A={x|1<x<5},C={x|y=ln(a-x)}={x|a-x>0}={x|x<a},且A∩C=∅,
∴a≤1.

點評 此題考查了交、并、補集的混合運算,以及集合的包含關系判斷及應用,熟練掌握各自的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源:2016-2017學年廣東清遠三中高二上學期月考一數學(文)試卷(解析版) 題型:解答題

已知數列的前項和為,且.

(1)證明:數列是等差數列, 并求出數列的通項公式;

(2)求數列的前項和為.

查看答案和解析>>

科目:高中數學 來源:2017屆四川巴中市高中高三畢業(yè)班10月零診理數試卷(解析版) 題型:填空題

設函數,其中,,若存在使得成立,則實數的值是 .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.計算
(1)${(3\frac{3}{8})^{-\frac{2}{3}}}+{16^{0.25}}-\root{3}{e}×{e^{\frac{2}{3}}}-{(3-π)^0}+\sqrt{{{(2-e)}^2}}$
(2)eln2+lg2+2lg$\sqrt{5}+\frac{{{{log}_8}9}}{{{{log}_2}3}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.在等比數列{bn}中,S4=4,S8=20,那么S12=84.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.等比數列{an}中,a1=1,a4=27,則{an}的前4項和為40.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0),定點M(2,0),以O為圓心,拋物線C的準線與以|OM|為半徑的圓所交的弦長為2$\sqrt{3}$.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若直線y=-x+m(m∈R)與拋物線交于不同的兩點A、B,則拋物線上是否存在定點P(x0,y0),使得直線PA,PB關于x=x0對稱.若存在,求出P點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.設含有10個元素的集合的全部子集數為S,其中由3個元素組成的子集數為T,則$\frac{T}{S}$的值為( 。
A.$\frac{20}{128}$B.$\frac{15}{128}$C.$\frac{16}{128}$D.$\frac{21}{128}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.設拋物線y2=2px(p>0)與雙曲線mx2+ny2=1(mn<0)的一條漸近線的一個公共點M的坐標為(${\sqrt{p}$,y0),若點M到拋物線的焦點距離為4,則雙曲線的離心率為(  )
A.$\sqrt{5}$B.$\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$或3D.3

查看答案和解析>>

同步練習冊答案