3.設(shè)含有10個元素的集合的全部子集數(shù)為S,其中由3個元素組成的子集數(shù)為T,則$\frac{T}{S}$的值為(  )
A.$\frac{20}{128}$B.$\frac{15}{128}$C.$\frac{16}{128}$D.$\frac{21}{128}$

分析 含有10個元素的集合的全部子集數(shù)為s=210,由3個元素組成的子集數(shù)為T=C${\;}_{10}^{3}$,求比值即可.

解答 解:含有10個元素的集合的全部子集數(shù)為s=210,由3個元素組成的子集數(shù)為T=C${\;}_{10}^{3}$,
∴$\frac{T}{S}=\frac{{C}_{10}^{3}}{{2}^{10}}=\frac{15}{128}$

點評 本題主要考查集合的子集,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知,則=____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x|1<x<5},B={x|1<2x-2<16},C={x|y=ln(a-x)},全集為實數(shù)集R.
(1)求A∪B,(∁RA)∩B;
(2)若A∩C=∅,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若α∈($\frac{π}{2}$,π),且5cos2α=$\sqrt{2}$sin($\frac{π}{4}$-α),則tanα等于( 。
A.-$\frac{4}{3}$B.-$\frac{1}{3}$C.-$\frac{3}{4}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)的定義域為R,若存在常數(shù)M>0,使|f(x)|≤M|x|對一切實數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):
①f(x)=2x;     ②f(x)=x2+1;    ③f(x)=sin(x+$\frac{π}{4}$);④f(x)是定義在實數(shù)集R的奇函數(shù),且對一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是“倍約束函數(shù)”的是①④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點A(x1,lgx1),B(x2,lgx2)是函數(shù)f(x)=lgx的圖象上任意不同兩點,依據(jù)圖象可知,線段AB總是位于A,B兩點之間函數(shù)圖象的下方,因此有結(jié)論$\frac{lg{x}_{1}+lg{x}_{2}}{2}$<lg($\frac{{x}_{1}+{x}_{2}}{2}$)成立.運用類比思想方法可知,若點A(x1,${2}^{{x}_{1}}$),B(x2,${2}^{{x}_{2}}$) 是函數(shù)g(x)=2x的圖象上的不同兩點,則類似地有$\frac{{2}^{{x}_{1}}+{2}^{{x}_{2}}}{2}>{2}^{\frac{{x}_{1}+{x}_{2}}{2}}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點A、B、C都在半徑為$\sqrt{2}$的球面上,且AC⊥BC,∠ABC=30°,球心O到平面ABC的距離為1,點M是線段BC的中點,過點M作球O的截面,則截面面積的最小值為(  )
A.$\frac{\sqrt{3}π}{4}$B.$\frac{3π}{4}$C.$\sqrt{3}π$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點A為拋物線C:x2=4y上的動點(不含原點),過點A的切線交x軸于點B,設(shè)拋物線C的焦點為F,則∠ABF為( 。
A.銳角B.直角C.鈍角D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.以點A(-5,4)為圓心,且與y軸相切的圓的方程是( 。
A.(x+5)2+(y-4)2=25B.(x-5)2+(y+4)2=16C.(x+5)2+(y-4)2=16D.(x-5)2+(y+4)2=25

查看答案和解析>>

同步練習(xí)冊答案