A. | $\frac{81}{4}$ | B. | 6 | C. | $\frac{81}{2}$ | D. | 9 |
分析 求出導(dǎo)函數(shù),利用函數(shù)在極值點處的導(dǎo)數(shù)值為0得到a,b滿足的條件,利用基本不等式求出ab的最值.
解答 解:由題意,導(dǎo)函數(shù)f′(x)=18x2-2ax-2b,
∵在x=1處有極值,
∴a+b=9,
∵a>0,b>0,
∴ab≤($\frac{a+b}{2}$)2=$\frac{81}{4}$,當(dāng)且僅當(dāng)a=b=$\frac{9}{2}$時取等號,
∴t=ab的最大值等于$\frac{81}{4}$.
故選:A.
點評 本題考查函數(shù)在極值點處的導(dǎo)數(shù)值為0、考查利用基本不等式求最值,需注意:一正、二定、三相等.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {5,7} | B. | {1,3,9} | C. | {3,5,7} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要 | B. | 充分非必要 | ||
C. | 必要非充分 | D. | 既非充分也非必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2-x+1<0 | B. | ?x∈R,x2-x+1>0 | C. | ?x∈R,x2-x+1>0 | D. | ?x∈R,x2-x+1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com