11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{2lnx,x>1}\end{array}\right.$,則函數(shù)|f(x)|≥2的解集為( 。
A.[-1,e)B.(-∞,-1]∪[e,+∞)C.(-∞,-1]∪[e,+∞)D.[e,+∞)

分析 根據(jù)解析式對(duì)x進(jìn)行分類討論,分別利用絕對(duì)值不等式化簡(jiǎn)|f(x)|≥2,由一元二次不等式的解法、對(duì)數(shù)函數(shù)的性質(zhì)求出不等式的解集.

解答 解:當(dāng)x≤1時(shí),|f(x)|≥2為|-x2+x|≥2,
∴-x2+x≥2或-x2+x≤-2,即x2-x+2≤0或x2-x-2≥0,
解得x≥2或x≤-1,即x≤-1;
當(dāng)x>1時(shí),|f(x)|≥2為|2lnx|≥2,
即lnx≥1或lnx≤-1,解得x≥e或0<x≤$\frac{1}{e}$,即x≥e,
綜上可得,不等式的解集是(-∞,-1]∪[e,+∞),
故選:C.

點(diǎn)評(píng) 本題考查絕對(duì)值不等式、一元二次不等式的解法,以及對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,考查分類討論思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)直線l:y=kx+m(k,m∈Z)與橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1交于不同兩點(diǎn)B、D,與雙曲線$\frac{x^2}{4}$-$\frac{y^2}{12}$=1交于不同兩點(diǎn)E、F,則滿足|BE|=|DF|的直線l共有( 。
A.5條;B.4條C.3條D.2條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.對(duì)于問(wèn)題:已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0,給出如下解法:
解:由關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為($\frac{1}{2}$,3),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為$({\frac{1}{3},2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.a(chǎn)rctan$\sqrt{3}$-arcsin(-$\frac{1}{2}$)+arccos0的值為( 。
A.$\frac{5π}{6}$B.πC.0D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若對(duì)于任意x>0,$\frac{{x}^{2}}{7{x}^{2}-4x+1}$≤a恒成立,則實(shí)數(shù)a的取值范圍是$[\frac{1}{3},∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.作出函數(shù)y=sin(x-$\frac{π}{6}$)+1在[$\frac{π}{6}$,$\frac{13}{6}$π]的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知命題“若直線l與平面α垂直,則直線l與平面α內(nèi)的任意一條直線垂直”,則其逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某工廠生產(chǎn)某種黑色水筆,每百支水筆的成本為30元,并且每百支水筆的加工費(fèi)為m元(其中m為常數(shù),且3≤m≤6).設(shè)該工廠黑色水筆的出廠價(jià)為x元/百支(35≤x≤40),根據(jù)市場(chǎng)調(diào)查,日銷售量與ex成反比例,當(dāng)每百支水筆的出廠價(jià)為40元時(shí),日銷售量為10萬(wàn)支.
(1)當(dāng)每百支水筆的日售價(jià)為多少元時(shí),該工廠的利潤(rùn)y最大,并求y的最大值.
(2)已知工廠日利潤(rùn)達(dá)到1000元才能保證工廠的盈利.若該工廠在出廠價(jià)規(guī)定的范圍內(nèi),總能盈利,則每百支水筆的加工費(fèi)m最多為多少元?(精確到0.1元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知x>y>0,則x+$\frac{1}{{({x-y})y}}$的最小值是( 。
A.2B.3C.4D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案