【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,且經(jīng)過點(diǎn).

1)求橢圓的方程;

2)直線的斜率為,且與橢圓相交于,兩點(diǎn)(異于點(diǎn)),過的角平分線交橢圓于另一點(diǎn).證明:直線與坐標(biāo)軸平行.

【答案】1;(2)證明見解析

【解析】

1)根據(jù)橢圓的性質(zhì),求解即可;

2)因?yàn)?/span>平分,欲證與坐標(biāo)軸平行,即證明直線的方程為,只需證,斜率都存在,且滿足即可.將直線的方程與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理求解即可.

1)解:,將代入橢圓方程,得,

解得,故橢圓的方程為.

2)證明:∵平分

欲證與坐標(biāo)軸平行,即證明直線的方程為

只需證,斜率都存在,且滿足即可.

當(dāng)斜率不存在時(shí),即點(diǎn)或點(diǎn)

經(jīng)檢驗(yàn),此時(shí)直線與橢圓相切,不滿足題意,故斜率都存在.

設(shè)直線,,

聯(lián)立,

,∴,

由韋達(dá)定理得,,

得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省年開始將全面實(shí)施新高考方案.在門選擇性考試科目中,物理、歷史這兩門科目采用原始分計(jì)分;思想政治、地理、化學(xué)、生物這4門科目采用等級(jí)轉(zhuǎn)換賦分,將每科考生的原始分從高到低劃分為,,,,個(gè)等級(jí),各等級(jí)人數(shù)所占比例分別為、、、,并按給定的公式進(jìn)行轉(zhuǎn)換賦分.該省組織了一次高一年級(jí)統(tǒng)一考試,并對(duì)思想政治、地理、化學(xué)、生物這4門科目的原始分進(jìn)行了等級(jí)轉(zhuǎn)換賦分.

1)某校生物學(xué)科獲得等級(jí)的共有10名學(xué)生,其原始分及轉(zhuǎn)換分如下表:

原始分

91

90

89

88

87

85

83

82

轉(zhuǎn)換分

100

99

97

95

94

91

88

86

人數(shù)

1

1

2

1

2

1

1

1

現(xiàn)從這10名學(xué)生中隨機(jī)抽取3人,設(shè)這3人中生物轉(zhuǎn)換分不低于分的人數(shù)為,求的分布列和數(shù)學(xué)期望;

2)假設(shè)該省此次高一學(xué)生生物學(xué)科原始分服從正態(tài)分布.若,令,則,請(qǐng)解決下列問題:

①若以此次高一學(xué)生生物學(xué)科原始分等級(jí)的最低分為實(shí)施分層教學(xué)的劃線分,試估計(jì)該劃線分大約為多少分?(結(jié)果保留為整數(shù))

②現(xiàn)隨機(jī)抽取了該省名高一學(xué)生的此次生物學(xué)科的原始分,若這些學(xué)生的原始分相互獨(dú)立,記為被抽到的原始分不低于分的學(xué)生人數(shù),求取得最大值時(shí)的值.

附:若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年泉州市農(nóng)村電商發(fā)展迅猛,成為創(chuàng)新農(nóng)產(chǎn)品交易方式、增加農(nóng)民收入、引導(dǎo)農(nóng)業(yè)供給側(cè)結(jié)構(gòu)性改革、促進(jìn)鄉(xiāng)村振興的重要力量,成為鄉(xiāng)村振興的新引擎.2019年大學(xué)畢業(yè)的李想,選擇回到家鄉(xiāng)泉州自主創(chuàng)業(yè),他在網(wǎng)上開了一家水果網(wǎng)店.2019年雙十一期間,為了增加水果銷量,李想設(shè)計(jì)了下面兩種促銷方案:方案一:購(gòu)買金額每滿120元,即可抽獎(jiǎng)一次,中獎(jiǎng)可獲得20元,每次中獎(jiǎng)的概率為),假設(shè)每次抽獎(jiǎng)相互獨(dú)立.方案二:購(gòu)買金額不低于180元時(shí),即可優(yōu)惠元,并在優(yōu)惠后的基礎(chǔ)上打九折.

1)在促銷方案一中,設(shè)每10個(gè)抽獎(jiǎng)人次中恰有6人次中獎(jiǎng)的概率為,求的最大值點(diǎn);

2)若促銷方案二中,李想每筆訂單得到的金額均不低于促銷前總價(jià)的八折,求的最大值;

3)以(1)中確定的作為的值,且當(dāng)取最大值時(shí),若某位顧客一次性購(gòu)買了360元,則該顧客應(yīng)選擇哪種促銷方案?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),曲線上異于原點(diǎn)的兩點(diǎn),所對(duì)應(yīng)的參數(shù)分別為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)當(dāng)時(shí),直線平分曲線,求的值;

2)當(dāng)時(shí),若,直線被曲線截得的弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正態(tài)分布有極其廣泛的實(shí)際背景,生產(chǎn)與科學(xué)實(shí)驗(yàn)中很多隨機(jī)變量的概率分布都可以近似地用正態(tài)分布來(lái)描述.例如,同一種生物體的身長(zhǎng)、體重等指標(biāo).隨著“綠水青山就是金山銀山”的觀念不斷的深入人心,環(huán)保工作快速推進(jìn),很多地方的環(huán)境出現(xiàn)了可喜的變化.為了調(diào)查某水庫(kù)的環(huán)境保護(hù)情況,在水庫(kù)中隨機(jī)捕撈了100條魚稱重.經(jīng)整理分析后發(fā)現(xiàn),魚的重量x(單位:kg)近似服從正態(tài)分布,如圖所示,已知.

(Ⅰ)若從水庫(kù)中隨機(jī)捕撈一條魚,求魚的重量在內(nèi)的概率;

(Ⅱ)(。⿵牟稉频100條魚中隨機(jī)挑出6條魚測(cè)量體重,6條魚的重量情況如表.

重量范圍(單位:kg

條數(shù)

1

3

2

為了進(jìn)一步了解魚的生理指標(biāo)情況,從6條魚中隨機(jī)選出3條,記隨機(jī)選出的3條魚中體重在內(nèi)的條數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;

(ⅱ)若將選剩下的94條魚稱重做標(biāo)記后立即放生.兩周后又隨機(jī)捕撈1000條魚,發(fā)現(xiàn)其中帶有標(biāo)記的有2.為了調(diào)整生態(tài)結(jié)構(gòu),促進(jìn)種群的優(yōu)化,預(yù)備捕撈體重在內(nèi)的魚的總數(shù)的40%進(jìn)行出售,試估算水庫(kù)中魚的條數(shù)以及應(yīng)捕撈體重在內(nèi)的魚的條數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié),一場(chǎng)突如其來(lái)的新型冠狀病毒感染的肺炎疫情,牽動(dòng)著我們每個(gè)人的心,嚴(yán)重?cái)_亂了大家的正常生活,在全國(guó)人民的共同努力下,疫情得到了有效的控制.已知某市A,B,C三個(gè)小區(qū)的志愿者人數(shù)分別為60,40,20,現(xiàn)采用分層抽樣的方法從這120名志愿者中隨機(jī)抽取6人去支援夕陽(yáng)紅敬老院.若再?gòu)倪@6人中隨機(jī)抽取2名作為負(fù)責(zé)人,則這2名志愿者來(lái)自不同小區(qū)的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)為平面直角坐標(biāo)系中的一個(gè)動(dòng)點(diǎn)(其中為坐標(biāo)系原點(diǎn)),點(diǎn)到定點(diǎn)的距離比到直線的距離大1,動(dòng)點(diǎn)的軌跡方程為.

1)求曲線的方程;

2)若過點(diǎn)的直線與曲線相交于、兩點(diǎn).

①若,求直線的直線方程;

②分別過點(diǎn),作曲線的切線且交于點(diǎn),是否存在以為圓心,以為半徑的圓與經(jīng)過點(diǎn)且垂直于直線的直線相交于、兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺(tái))

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場(chǎng)空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷售量;

(2)若該商場(chǎng)的營(yíng)銷部對(duì)空調(diào)進(jìn)行新一輪促銷,對(duì)7月到12月有購(gòu)買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地?cái)M購(gòu)買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過營(yíng)銷部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

有購(gòu)買意愿對(duì)應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購(gòu)買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購(gòu)買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若是函數(shù)的零點(diǎn),是函數(shù)的零點(diǎn).

1)比較的大。

2)證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案