【題目】在平面直角坐標系中,已知曲線(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程,點在直線上,直線與曲線交于兩點.
(1)求曲線的普通方程及直線的參數(shù)方程;
(2)求的面積.
【答案】(1),(為參數(shù));(2).
【解析】
(1)消參將曲線的參數(shù)方程化為普通方程,再將的極坐標方程先化為一般方程,再化為參數(shù)方程;
(2)聯(lián)立直線與橢圓方程,求出弦長,再求點到的距離,求出的面積.
(1)將曲線,消去參數(shù)得,曲線的普通方程為,
∵點在直線上,∴,
∴,展開得,
又,,∴直線的直角坐標方程為,
顯然過點,傾斜角為,∴直線的參數(shù)方程為(為參數(shù)).
(2)由(1),將直線的參數(shù)方程代入曲線的普通方程得:
,整理得,顯然,
設(shè)對應(yīng)的參數(shù)為,,則由韋達定理得,,
由參數(shù)的幾何意義得,
又原點到直線的距離為,
因此,的面積為.
科目:高中數(shù)學 來源: 題型:
【題目】隨機取一個由0和1構(gòu)成的8位數(shù),它的偶數(shù)位數(shù)字之和與奇數(shù)位數(shù)字之和相等的概率為____________ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的零點個數(shù);
(2)若(為給定的常數(shù),且),記在區(qū)間上的最小值為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第24屆冬奧會將于2022年2月4日至2月22日在北京市和河北省張家口市聯(lián)合舉行,這是中國歷史上第一次舉辦冬季奧運會.為了宣傳冬奧會,讓更多的人了解、喜愛冰雪項目,某校高三年級舉辦了冬奧會知識競賽(總分100分),并隨機抽取了名中學生的成績,繪制成如圖所示的頻率分布直方圖.已知前三組的頻率成等差數(shù)列,第一組和第五組的頻率相同.
(Ⅰ)求實數(shù),的值,并估計這名中學生的成績平均值;(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(Ⅱ)已知抽取的名中學生中,男女生人數(shù)相等,男生喜歡花樣滑冰的人數(shù)占男生人數(shù)的,女生喜歡花樣滑冰項的人數(shù)占女生人數(shù)的,且有95%的把握認為中學生喜歡花樣滑冰與性別有關(guān),求的最小值.
參考數(shù)據(jù)及公式如下:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體的棱長為,為的中點,下列說法中正確的是( )
A.與所成的角大于
B.點到平面的距離為
C.三棱錐的外接球的表面積為
D.直線與平面所成的角為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高二某班共有45人,學號依次為1、2、3、…、45,現(xiàn)按學號用系統(tǒng)抽樣的辦法抽取一個容量為5的樣本,已知學號為6、24、33的同學在樣本中,那么樣本中還有兩個同學的學號應(yīng)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的四棱錐中,底面為矩形,平面,,M,N分別是,的中點.
(1)求證:平面;
(2)若直線與平面所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com