函數(shù)y=x2lnx的導(dǎo)數(shù)是( 。
A、y′=2xlnx+x2
B、y′=2xlnx-x2
C、y′=2xlnx-x
D、y′=2xlnx+x
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的運(yùn)算法則即可得到結(jié)論.
解答: 解:函數(shù)的導(dǎo)數(shù)為y′=2xlnx+x2
1
x
=2xlnx+x,
故選:D
點(diǎn)評(píng):本題主要考查函數(shù)的導(dǎo)數(shù)的運(yùn)算,根據(jù)導(dǎo)數(shù)的運(yùn)算法則是解決本題的關(guān)鍵,要求熟練掌握常見(jiàn)函數(shù)的導(dǎo)數(shù)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(-1,2),
b
=(1,2),
a
b
所成的角為θ,則cosθ=( 。
A、3
B、
3
5
C、
15
5
D、-
15
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos2(2x-
π
3
)的最小正周期是(  )
A、2π
B、π
C、
π
2
D、
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐O-ABC的各邊長(zhǎng)都相等,點(diǎn)G為△OBC的重心,以向量
OA
OB
、
OC
為基向量,則向量
AG
可以表示為( 。
A、
AG
=
1
3
OA
+
1
3
OB
+
1
3
OC
B、
AG
=-
1
3
OA
+
1
3
OB
+
1
3
OC
C、
AG
=
OA
+
1
3
OB
+
1
3
OC
D、
AG
=-
OA
+
1
3
OB
+
1
3
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線C的參數(shù)方程為
x=-1+2
2
cosθ
y=-2+2
2
sinθ
(θ為參數(shù)),直線l的方程為x+y+1=0,則曲線C上到直線l距離為
2
的點(diǎn)的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線2x+3y+8=0與直線x-y-1=0的交點(diǎn)坐標(biāo)是( 。
A、(-2,-1)
B、(1,2)
C、(-1,-2)
D、(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin160°=a,則cos160°=(  )
A、a
B、
1-a2
C、±
1-a2
D、-
1-a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=-
1
2
x2的焦點(diǎn)坐標(biāo)是(  )
A、(0,-
1
2
B、(-
1
2
,0)
C、(0,-
1
8
D、(-
1
8
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3sin(ωx+
π
3
)(ω>0)的最小正周期為π.
(1)求ω值;
(2)若函數(shù)g(x)=f(x)(
x
2
+
π
12
),α,β∈(0,π),且g(α)=1,g(β)=
3
2
4
,求g(α-β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案