15.當(dāng)實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x≤4}\\{2x+2y+a≥0}\end{array}\right.$(a為常數(shù))時z=$\frac{2x+y}{2x-1}$有最大值為$\frac{9}{5}$,則實數(shù)a的值為-12.

分析 畫出可行域,將目標(biāo)函數(shù)變形,由其幾何意義可得斜率最大值,代入兩點求斜率可得a的值.

解答 解:

z=$\frac{2x+y}{2x-1}$=$\frac{2x-1+y+1}{2x-1}$=1+$\frac{y+1}{2x-1}$=$1+\frac{1}{2}•\frac{y-(-1)}{x-\frac{1}{2}}$,
z=$\frac{2x+y}{2x-1}$有最大值為$\frac{9}{5}$,即可行域內(nèi)動點與定點P($\frac{1}{2},-1$)連線的斜率的最大值為$\frac{8}{5}$.
聯(lián)立$\left\{\begin{array}{l}{y=x}\\{2x+2y=a}\end{array}\right.$,解得C($-\frac{a}{4},-\frac{a}{4}$),
由$\frac{-\frac{a}{4}-(-1)}{-\frac{a}{4}-\frac{1}{2}}=\frac{8}{5}$,解得:a=-12.
故答案為:-12.

點評 本題考查畫不等式組表示的平面區(qū)域、結(jié)合圖求目標(biāo)函數(shù)的最值、考查數(shù)形結(jié)合的數(shù)學(xué)思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)為偶函數(shù),且f(x)在(0,+∞)上單調(diào)遞增,若x1<0,x2>0,且|x1|<|x2|,則有(  )
A.f(-x1)+f(-x2)>0B.f(x1)+f(x2)<0C.f(-x1)-f(x2)>0D.f(x1)-f(x2)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{4}$,sin$\frac{3x}{4}$),$\overrightarrow$=(cos($\frac{x}{4}$+$\frac{π}{3}$),-sin($\frac{x}{4}$+$\frac{π}{3}$)),且x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]
(1)若f(x)=|$\overrightarrow{a}$+$\overrightarrow$|的解析式;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定義在R上的函數(shù)f(x)滿足f(x)+f(-x)=0,且x≥0時,f(x)=2x-x2
(1)求x<0時,f(x)的解析式;
(2)是否存在這樣的正數(shù)a,b,當(dāng)x∈[a,b]時,g(x)=f(x),且g(x)的值域為[$\frac{1},\frac{1}{a}$]?若存在,求出a,b的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若f(3x)=2x2-1,則f(x)的解析式為f(x)=$\frac{2}{9}{x}^{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知實數(shù)a,b滿足ab>0,a2b=2,m=ab+a2
(Ⅰ)求m的最小值;
(Ⅱ)若m的最小值為t,正實數(shù)x,y,z滿足x2+y2+z2=$\frac{t}{3}$,求證:|x+2y+2z|≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}和{bn}中,an,bn,an+1成等差數(shù)列,$\sqrt{_{n}}$,$\sqrt{{a}_{n+1}}$,$\sqrt{_{n+1}}$成等比數(shù)列,且a1=0,b1=1,設(shè)cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=x2-2x-8,則函數(shù)f(2-x2)在(  )
A.區(qū)間[-2,0]上是減函數(shù)B.區(qū)間[0,2]上是減函數(shù)
C.區(qū)間[-1,0]上是增函數(shù)D.區(qū)間[0,1]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.方程x2-1=0的解與方程x+1=0的解組成的集合中共有2個元素.

查看答案和解析>>

同步練習(xí)冊答案