【題目】設橢圓的中心在坐標原點,其中一個焦點為圓的圓心,右頂點是圓軸的一個交點.已知橢圓與直線相交于、兩點,延長與橢圓交于點.

1)求橢圓的方程;

2)求面積的最大值.

【答案】(1)(2)3

【解析】

1)求出圓心,以及與軸的的交點(圓心右側(cè)),為橢圓的右頂點,即可求出橢圓方程;

(2)根據(jù)橢圓的對稱性,設,直線,,橢圓方程與直線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,利用韋達定理,求出關(guān)于為變量的函數(shù),運用換元法,結(jié)合求導,求出函數(shù)的最值,即為面積的最大值.

1)圓,化為,

圓心,與軸交點坐標,

右頂點為,所求的橢圓方程為.

2)設,,

得,.

,

,則,

,

恒成立,

單調(diào)遞增,當時,取得最小值,

此時取得最大值為3.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A是橢圓的上頂點,斜率為的直線交橢圓EA、M兩點,點N在橢圓E上,且.

1)當時,求的面積;

2)當時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左,右焦應分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為1.

1)求橢圓的方程;

2)已知直線與橢圓切于點,直線平行于,與橢圓交于不同的兩點,且與直線交于點.證明:存在常數(shù),使得,并求的值;

3)點是橢圓上除長軸端點外的任一點,連接,,設后的角平分線的長軸于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若曲線在點處有相同的切線,求函數(shù)的極值;

2)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,四個點,,中有3個點在橢圓.

1)求橢圓的標準方程;

2)過原點的直線與橢圓交于兩點(,不是橢圓的頂點),點在橢圓上,且,直線軸、軸分別交于、兩點,設直線,的斜率分別為,證明:存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:極坐標與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的直角坐標方程;

(2)若射線 與曲線交于兩點,與曲線交于兩點,求取最大值時的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD是直角梯形,側(cè)棱底面ABCD,AB垂直于ADBC,,且.M是棱SB的中點.

(Ⅰ)求證:SCD

(Ⅱ)求二面角的余弦值;

(Ⅲ)設點N是直線CD上的動點,MN與面SAB所成的角為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,,且的最小值為,的圖像的相鄰兩條對稱軸之間的距離為.

1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;

2)在中,角,,所對的邊分別為,,.,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集I=12,3,4,56},集合A,B都是I的子集,若AB=1,3,5},則稱AB理想配集,記作(A,B),問這樣的理想配集A,B)共有( )

A. 7B. 8C. 27D. 28

查看答案和解析>>

同步練習冊答案