已知函數(shù)f(x)=2sin(
π
3
x+
3
),則f(1)+f(2)+…+f(2012)+f(2013)的值是( 。
A、-2
3
B、-
3
C、
3
D、0
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的求值
分析:求出函數(shù)在一個(gè)周期內(nèi)的函數(shù)值之和即可得到結(jié)論.
解答: 解:函數(shù)的周期T=
π
3
=6
,則f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0-
3
-
3
+0+
3
+
3
=0,
則f(1)+f(2)+…+f(2012)+f(2013)=f(2011)+f(2012)+f(2013)=f(1)+f(2)+f(3)
=0-
3
-
3
=-2
3
,
故選:A
點(diǎn)評(píng):本題主要考查函數(shù)值的計(jì)算,根據(jù)三角函數(shù)的圖象和性質(zhì)求出函數(shù)的周期是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=asin(πx+α)+bcos(πx+β)+4(其中a,b,α,β為非零實(shí)數(shù)),若f(2012)=5,則f(2013)=(  )
A、5B、3C、8D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確命題的序號(hào)為
 

(1)若{an}為等比數(shù)列,且k+l=m+n(k,l,m,n∈N*),則akal=aman;
(2)若{an}為等比數(shù)列,公比為q,則{a2n}也是等比數(shù)列,公比為q2
(3)若{an}為等比數(shù)列,公比為q,則{a2n-1+a2n}也是等比數(shù)列,公比為q2;
(4)若{an}和{bn}都是公比為q的等比數(shù)列,則{an+bn}和{an•bn}也都是等比數(shù)列,且公比分別為q和q2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1
f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2007)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域
(1)y=
x+8
+
3-x

(2)y=
-x2-6x-5
;
(3)f(x)=
1
2-x
+lg(2x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a3、a7為方程x2-10x+4=0的兩根,則a1•a5•a9 的值為( 。
A、4B、8C、16D、±8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有含三個(gè)元素的集合,既可以表示為{a,
b
a
,1},也可表示為{a2,a+b,0},則a2013+b2013=(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-ax+1,x≥a
4x-4•2x-a,x<a

(1)在x<a時(shí),f(x)<1恒成立,求a的取值范圍;
(2)若a>-4,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2x+a
x+1
在(-∞,-1)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案