A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$或$-\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$或$-\frac{{\sqrt{6}}}{3}$ |
分析 由正弦定理求得sinB,再根據(jù)同角的三角函數(shù)基本關(guān)系求得cosB,利用大邊對(duì)大角,判斷B為銳角,即可求得cosB的值.
解答 解:由正弦定理可知:$\frac{a}{sinA}=\frac{sinB}$,
sinB=$\frac{bsinB}{a}$=$\frac{2×\frac{\sqrt{3}}{2}}{3}$=$\frac{\sqrt{3}}{3}$,
由同角的三角函數(shù)關(guān)系可知:cosB=±$\sqrt{1-si{n}^{2}B}$=±$\sqrt{1-\frac{1}{3}}$=±$\frac{\sqrt{6}}{3}$,
由a>b,
∴A>B,
∴B為銳角,cosB>0,
故cosB=$\frac{\sqrt{6}}{3}$.
故答案選:C.
點(diǎn)評(píng) 本題考查正弦定理,同角三角函數(shù)的基本關(guān)系及三角形邊和角關(guān)系,考查分析問題解決問題的能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{1-{k}^{2}}}{k}$ | B. | $\frac{\sqrt{1-{k}^{2}}}{k}$ | C. | ±$\frac{\sqrt{1-{k}^{2}}}{k}$ | D. | k$\sqrt{1-{k}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 27π | B. | 36π | C. | 54π | D. | 63π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24$\sqrt{2}$ | B. | 12$\sqrt{2}$ | C. | 48$\sqrt{2}$ | D. | 20$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com