分析 (1)求出函數(shù)的導(dǎo)數(shù),得到b=a(a+1),根據(jù)函數(shù)的奇偶性,求出a的值即可;
(2)求出函數(shù)的導(dǎo)數(shù),得到f(x)的單調(diào)區(qū)間,從而求出函數(shù)的極大值和極小值,求出a的值,得到函數(shù)的單調(diào)區(qū)間即可.
解答 解:(1)由題圖知d=0,又f'(x)=x2-(2a+1)x+b,(2分)
而方程x2-(2a+1)x+b=0的兩個(gè)根分別為a,a+1,故b=a(a+1),(3分)
又$g(x)=\frac{f'(x)}{x}=x+\frac{{{a^2}+a}}{x}-(2a+1),\;\;x≠0$,
∵$g(x)=\frac{f'(x)}{x}(x≠0)$為奇函數(shù),
∴?x≠0,g(-x)+g(x)=0,即2a+1=0,
∴$a=-\frac{1}{2}$,∴$b=-\frac{1}{4}$.(6分)
(2)f'(x)=x2-(2a+1)x+(a2+a)=(x-a)[x-(a+1)],
列表如下:
x | (-∞,a) | a | (a,a+1) | a+1 | (a+1,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的奇偶性問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $arcsin(-\frac{3}{5})$ | B. | $π+arcsin\frac{3}{5}$ | C. | $2π-arcsin\frac{3}{5}$ | D. | $π-arcsin\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充要 | B. | 必要不充分 | ||
C. | 充分不必要 | D. | 既不充分又不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com